
Transport Layer

CMPS 4750/6750: Computer Networks

1

Outline

§ Overview of transport-layer services

§ Connectionless Transport: UDP

§ Principles of reliable data transfer

§ Connection-Oriented Transport: TCP

§ TCP congestion control

2

Transport services and protocols

§ provide logical communication between
app processes running on different hosts

§ transport protocols run in end systems
• send side: breaks app messages into

segments, passes to network layer
• rcv side: reassembles segments into

messages, passes to app layer

§ more than one transport protocol
available to apps

• Internet: TCP and UDP

3

application
transport
network
data link
physical

logical end-end transport

application
transport
network
data link
physical

Transport vs. network layer

§network layer: logical communication between hosts

§ transport layer: logical communication between processes
• relies on, enhances, network layer services

4

Internet transport-layer protocols

§ unreliable, unordered delivery: UDP
• no-frills extension of “best-effort” IP

§ reliable, in-order delivery (TCP)
• connection setup
• flow control
• congestion control

§ services not available:
• delay guarantees
• bandwidth guarantees

5

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical network

data link
physical

logical end-end transport

Multiplexing/demultiplexing

6

process

socket

use header info to deliver
received segments to correct
socket

demultiplexing at receiver:handle data from multiple
sockets, add transport header
(later used for demultiplexing)

multiplexing at sender:

transport

application

physical
link

network

P2P1

transport

application

physical
link

network

P4

transport

application

physical
link

network

P3

How demultiplexing works

§ host receives IP datagrams
• each datagram has source IP address,

destination IP address
• each datagram carries one transport-

layer segment
• each segment has source, destination

port number

§ host uses IP addresses & port numbers to
direct segment to appropriate socket

7

source port # dest port #

32 bits

application
data

(payload)

other header fields

TCP/UDP segment format

Port number: 0 – 65535
Well-known port number: 0 - 1023

Connectionless demultiplexing

8

§ recall: created socket has host-local port #:
serverSocket =socket(AF_INET,SOCK_DGRAM)

serverSocket.bind((’’, 12000));

• when host receives UDP segment:
• checks destination port # in

segment
• directs UDP segment to socket

with that port #

§ recall: when creating
datagram to send into UDP
socket, must specify

• destination IP address
• destination port #

IP datagrams with same dest. port #,
but different source IP addresses
and/or source port numbers will be
directed to same socket at dest

Connection-oriented demux

§ serverSocket waiting for connections identified by IP address and port number

§ Other TCP sockets identified by 4-tuple:
• source IP address, source port number
• dest IP address, dest port number

9

serverSocket = socket(AF_INET,SOCK_STREAM)
serverSocket.bind((‘’,12000))
serverSocket.listen(1)
while True:

connectionSocket, addr = serverSocket.accept()
...

Connection-oriented demux: example

10

transport

application

physical
link

network

P2
transport

application

physical
link

transport

application

physical
link

network

P3

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157

host: IP
address A

host: IP
address C

server: IP
address B

network

P4

source IP,port: C,5775
dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

P1

threaded server

Outline

§ Overview of transport-layer services

§ Connectionless Transport: UDP

§ Principles of reliable data transfer

§ Connection-Oriented Transport: TCP

§ TCP congestion control

11

UDP: User Datagram Protocol [RFC 768]

§ “no frills,” “bare bones” Internet
transport protocol

§ “best effort” service, UDP segments
may be:

• lost
• delivered out-of-order to app

§ connectionless:
• no handshaking between UDP

sender, receiver
• each UDP segment handled

independently of others
12

§ why is there a UDP
§ no connection establishment (which can

add delay)
§ simple: no connection state at sender,

receiver
§ small header size
§ no congestion control: UDP can blast

away as fast as desired
§ application-specific error recovery

§ UDP use:
§ streaming multimedia apps, DNS, SNMP

UDP: segment header

13

source port # dest port #

32 bits

application
data

(payload)

UDP segment format

length checksum

length, in bytes of
UDP segment,

including header

UDP checksum

§ Goal: detect “errors” (e.g., flipped bits) in transmitted segment

14

sender:
§ treat segment contents,

including header fields, as
sequence of 16-bit integers

§ checksum: addition (one’s
complement sum) of
segment contents

§ sender puts checksum value
into UDP checksum field

receiver:
• compute checksum of

received segment
• check if computed checksum

equals checksum field value:
• NO - error detected
• YES - no error detected.

But maybe errors

Internet checksum: example

15

example: add two 16-bit integers

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0

wraparound

sum
checksum

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

11 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

Outline

§ Overview of transport-layer services

§ Connectionless Transport: UDP

§ Principles of reliable data transfer

§ Connection-Oriented Transport: TCP

§ TCP congestion control

16

Principles of reliable data transfer

§ important in application, transport, link layers
• top-10 list of important networking topics!

17

Principles of reliable data transfer

§ important in application, transport, link layers
• top-10 list of important networking topics!

18

Principles of reliable data transfer

§ important in application, transport, link layers
• top-10 list of important networking topics!

19

characteristics of unreliable
channel determine complexity
of reliable data transfer protocol

Reliable data transfer: getting started

20

send
side

receive
side

rdt_send(): called from above,
(e.g., by app.). Passed data to

deliver to receiver

udt_send(): called by rdt,
to transfer packet over

unreliable channel to receiver

rdt_rcv(): called when packet
arrives on rcv-side of channel

deliver_data(): called by
rdt to deliver data to upper

Reliable data transfer: getting started
we’ll:

§ incrementally develop sender, receiver sides of reliable data transfer
protocol (rdt)

§ consider only unidirectional data transfer
• but control info will flow on both directions!

§ use finite state machines (FSM) to specify sender, receiver

21

state
1

state
2

event causing state transition
actions taken on state transition

state: when in this
“state” next state

uniquely determined
by next event

event
actions

rdt1.0: reliable transfer over a reliable channel
§ underlying channel perfectly reliable

• no bit errors, no loss of packets, no reordering of packets

§ separate FSMs for sender, receiver:
• sender sends data into underlying channel
• receiver reads data from underlying channel

22

packet = make_pkt(data)
udt_send(packet)

Wait for
call from
above

rdt_send(data)

sender

Wait for
call from

below

rdt_rcv(packet)

receiver

extract (packet,data)
deliver_data(data)

Potential Channel Errors

§ bit errors

§ loss (drop) of packets

§ reordering or duplication

Ø characteristics of unreliable channel determine complexity of
reliable data transfer protocol

23

rdt2.0: channel with bit errors
§ underlying channel may flip bits in packet

• no loss of packets, no reordering of packets

§ checksum to detect bit errors
§ the question: how to recover from errors:

• acknowledgements (ACKs): receiver explicitly tells sender that pkt received OK
• negative acknowledgements (NAKs): receiver explicitly tells sender that pkt had

errors
• sender retransmits pkt on receipt of NAK
• Known as ARQ (Automatic Repeat reQuest) protocols

§ new mechanisms in rdt2.0 (beyond rdt1.0):
• error detection
• feedback: control msgs (ACK,NAK) from receiver to sender

24

Big Picture of rdt2.0

25

sender

data (n)

receiver

data (n)

ACK

data (n+1)

waiting
for N/ACK

waiting
for data

NACK

rdt2.0: FSM specification

26

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

Wait for
call from

below

receiver

Wait for
call from
above

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)Wait for

ACK or
NAK

sender

sndpkt = make_pkt(data, checksum)
udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt) && isACK(rcvpkt)
L

rdt2.0: operation with no errors

27

Wait for
call from
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

Wait for
ACK or

NAK

Wait for
call from

below

rdt_send(data)

L

rdt2.0: error scenario

Wait for
call from
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

Wait for
ACK or

NAK

Wait for
call from

below

rdt_send(data)

L

stop and wait
sender sends one packet,
then waits for receiver
response

rdt2.0 is Incomplete!

What happens if ACK/NAK corrupted?

§ Although sender receives feedback, but doesn’t know what
happened at receiver!

29

sender

data (n)waiting
for
N/ACK ?

Handle Control Message Corruption

It is always harder to deal with control message errors than data
message errors

§ sender can’t just retransmit: possible duplicate
§ neither can sender assumes received ok: possible missing packet
Handling duplicates:
§ sender adds sequence number to each pkt
§ sender retransmits current pkt if ACK/NAK garbled
§ receiver discards (doesn’t deliver up) duplicate pkt

30

sender sends one packet,
then waits for receiver
response

stop and wait

rdt2.1: sender, handles garbled ACK/NAKs: Using 1 bit
(Alternating-Bit Protocol)

31

Wait for
call 0 from

above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

Wait for
ACK or
NAK 0 udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isNAK(rcvpkt))

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isNAK(rcvpkt))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

Wait for
call 1 from

above

Wait for
ACK or
NAK 1

L
L

rdt2.1: receiver, handles garbled ACK/NAKs: Using
1 bit

32

Wait for
0 from
below

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has_seq0(rcvpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Wait for
1 from
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq0(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has_seq1(rcvpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt2.1: discussion

33

sender:
§ state must “remember” whether

“current” pkt has seq # of 0 or 1

receiver:
• must check if received packet is

duplicate
• state indicates whether 0 or 1 is

expected pkt seq #

rdt2.2: a NAK-free protocol

§ same functionality as rdt2.1, using ACKs only

§ instead of NAK, receiver sends ACK for last pkt received OK
• receiver must explicitly include seq # of pkt being ACKed

§ duplicate ACK at sender results in same action as NAK: retransmit
current pkt

34

rdt2.2: sender, receiver fragments

35

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK1, chksum)
udt_send(sndpkt)

Wait for
0 from
below

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||

has_seq1(rcvpkt))

udt_send(sndpkt)
receiver FSM

fragment

Wait for
call 0 from

above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||

isACK(rcvpkt,1))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

Wait for
ACK

0
sender FSM
fragment

L

rdt3.0: channels with errors and loss

36

new assumption: underlying
channel can also lose packets
(data, ACKs)

• checksum, seq. #, ACKs,
retransmissions will be of help …
but not enough

approach: sender waits
“reasonable” amount of time
for ACK

• requires countdown timer
• retransmits if no ACK received in this

time
• if pkt (or ACK) just delayed (not lost):

• retransmission will be duplicate,
but seq. #’s already handles this

• receiver must specify seq # of pkt
being ACKed

rdt3.0 sender

37

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

Wait
for

ACK0

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,1))

Wait for
call 1 from

above

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,0))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,1)

stop_timer
stop_timer

udt_send(sndpkt)
start_timer

timeout

udt_send(sndpkt)
start_timer

timeout

rdt_rcv(rcvpkt)

Wait for
call 0 from

above

Wait
for

ACK1

L
rdt_rcv(rcvpkt)

L
L

L

rdt3.0 in action

38

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt0

pkt1

ack1

ack0

ack0

(a) no loss

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt0

ack1

ack0

ack0

(b) packet loss

pkt1
X

loss

pkt1
timeout

resend pkt1

rdt3.0 in action

39

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt0

ack1

ack0

ack0

(c) ACK loss

ack1
X

loss

pkt1
timeout

resend pkt1

rcv pkt1
send ack1

(detect duplicate)

pkt1

rcv pkt1

send ack0
rcv ack0

send pkt1

send pkt0
rcv pkt0

pkt0

ack0

(d) premature timeout/ delayed ACK

pkt1
timeout

resend pkt1

ack1

send ack1
ack1send pkt0

rcv ack1 pkt0

rcv pkt0
send ack0ack0

A Summary of Questions

§ How to improve the performance of rdt3.0?

§ What if there are reordering and duplication?

§ How to determine the “right” timeout value?

40

rdt3.0: stop-and-wait performance

41

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

What is the utilization of sender – fraction of time sender busy sending?

Assume: 1 Gbps link, 15 ms prop. delay, 1KB packet

Performance of rdt3.0
§ rdt3.0 is correct, but performance stinks

§ e.g.: 1 Gbps link, 15 ms prop. delay, 1 KB packet:

42

§ U sender: utilization – fraction of time sender busy sending

U
sender =

.008
30.008

= 0.00027 L / R
RTT + L / R

=

§ 1KB pkt every 30 msec: 33kB/sec thruput over 1 Gbps link

§ network protocol limits use of physical resources!

Dtrans = L
R

8000 bits
109 bits/sec= = 8 microsecs

Pipelining: increased utilization

43

first packet bit transmitted, t = 0
sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

3-packet pipelining increases
utilization by a factor of 3!

U
sender =

.0024
30.008

= 0.00081 3L / R
RTT + L / R

=

two generic forms of pipelined protocols: go-Back-N, selective repeat

Go-Back-N Overview

§ sender keeps a window of packets
• window represents a series of consecutive

sequence numbers
• window size N : number of un-ACKed

packets allowed

§ cumulative ACKs
• ACK(n): acks packets up to and including n
• sender may receive duplicate acks

44

§ go-back-N
• sender keeps a timer for the oldest

in-flight packet
• timeout(n) : retransmit packet n

and all higher packets
• no receiver buffering!

GBN: sender extended FSM

45

Wait start_timer
udt_send(sndpkt[base])
udt_send(sndpkt[base+1])
…
udt_send(sndpkt[nextseqnum-1])

timeout

rdt_send(data)

if (nextseqnum < base+N) {
sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)
udt_send(sndpkt[nextseqnum])
if (base == nextseqnum)

start_timer
nextseqnum++
}

else
refuse_data(data)

if (new packets ACKed)
advance base;

If (base == nextseqnum)
stop_timer

else
start_timer

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base=1
nextseqnum=1

rdt_rcv(rcvpkt)
&& corrupt(rcvpkt)

L

L

GBN: receiver extended FSM

46

• only state: expectedseqnum
• out-of-order packet:

• discard: no receiver buffering!
• re-ACK packet with highest in-order sequence number
• may generate duplicate ACKs

Wait

udt_send(sndpkt)
default

rdt_rcv(rcvpkt)
&& notcurrupt(rcvpkt)
&& hasseqnum(rcvpkt,expectedseqnum)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedseqnum++

expectedseqnum=1
sndpkt =
make_pkt(expectedseqnum,ACK,chksum)

L

GBN in action

47

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

rcv ack0, send pkt4
rcv ack1, send pkt5

pkt 2 timeout
send pkt2
send pkt3
send pkt4
send pkt5

Xloss

receive pkt4, discard,
(re)send ack1

receive pkt5, discard,
(re)send ack1

rcv pkt2, deliver, send ack2
rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

ignore duplicate ACK

0 1 2 3 4 5 6 7 8

sender window (N=4)

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

receive pkt3, discard,
(re)send ack1

Selective repeat

§ sender keeps a window of packets
• window represents a series of consecutive sequence numbers

• window size N: number of un-ACKed packets allowed
⇒ same as Go-Back-N

§ selective ACKs
• ACK(n): ACKs only sequence number n

§ selective repeat
• sender keeps a timer for each packet

• timeout(n) : retransmit packet n only
• receiver must buffer out-of-order packets!

48

Selective repeat: sender, receiver windows

49

Selective repeat: sender, receiver windows

50

Selective repeat

51

data from above:
§ if next available seq # in window,

send pkt

timeout(n):
§ resend pkt n, restart timer

ACK(n) in [sendbase,sendbase+N-1]:

§ mark pkt n as received

§ if n smallest unACKed pkt, advance
window base to next unACKed seq #

pkt n in [rcvbase, rcvbase+N-1]
§ send ACK(n)
§ out-of-order: buffer
§ in-order: deliver buffered in-order

pkts, advance window to next not-
yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]
§ ACK(n)

otherwise:
§ ignore

sender receiver

Selective repeat in action

52

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

rcv ack0, send pkt4
rcv ack1, send pkt5

pkt 2 timeout
send pkt2

Xloss

receive pkt4, buffer,
send ack4

receive pkt5, buffer,
send ack5

rcv pkt2; deliver pkt2,
pkt3, pkt4, pkt5; send ack2

record ack3 arrived

0 1 2 3 4 5 6 7 8

sender window (N=4)

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

record ack4 arrived
record ack5 arrived

Q: what happens when ack2 arrives?

receive pkt3, buffer,
send ack3

Selective repeat: dilemma

53

example:
§ 2 bit sequence number
§ window size=3

§ receiver sees no difference in
two scenarios!

§ Q: how large should
sequence space be?

receiver window
(after receipt)

sender window
(after receipt)

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0
pkt1
pkt2

0 1 2 3 0 1 2 pkt0

timeout
retransmit pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2X
X
X

will accept packet
with seq number 0(b) oops!

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0
pkt1
pkt2

0 1 2 3 0 1 2
pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X
will accept packet
with seq number 0

0 1 2 3 0 1 2 pkt3

(a) no problem

Sliding Window Protocols: Go-back-N vs. Selective Repeat

54

Go-back-N Selective Repeat

data bandwidth: sender to
receiver

ACK bandwidth (receiver
to sender)

Relationship between M
(the number of seq#) and
N (window size)

Buffer size at receiver

Complexity

More efficient Less efficient

? ?

1 N

Simpler More complex

Less efficient More efficient

Outline

§ Overview of transport-layer services

§ Connectionless Transport: UDP

§ Principles of reliable data transfer

§ Connection-Oriented Transport: TCP

§ TCP congestion control

55

TCP: Overview RFCs: 793,1122,1323, 2018, 2581

§ point-to-point:
• one sender, one receiver

§ reliable, in-order byte steam:
• no “message boundaries”

§ pipelined:
• TCP congestion and flow control

set window size

56

§ full duplex data:
• bi-directional data flow in same

connection

§ connection-oriented:
• handshaking (exchange of control

msgs) inits sender, receiver state
before data exchange

§ flow controlled:
• sender will not overwhelm

receiver

57

TCP segment structure

58

source port # dest port #

32 bits

application
data

(variable length)

sequence number
acknowledgement number

receive window

Urg data pointerchecksum
FSRPAUhead

len
not

used

options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting by bytes
of data
(not segments!)

Internet
checksum

(as in UDP) ≤ maximum segment
size (MSS)

For Ethernet, the largest link
layer frame is 1500 bytes, MSS is
typically 1460 bytes (assuming
40 bytes TCP/IP header)

TCP seq. numbers, ACKs

59

sequence numbers:
• byte stream “number” of

first byte in segment’s
data

acknowledgements:
• seq # of next byte

expected from other side
• cumulative ACK

User
types
‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes
back ‘C’

simple telnet scenario

Host BHost A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

TCP round trip time, timeout

Q: how to set TCP timeout value?
§ longer than RTT
• but RTT varies

§ too short: premature timeout,
unnecessary retransmissions

§ too long: slow reaction to segment
loss

60

Q: how to estimate RTT?
• SampleRTT: measured time from

segment transmission until ACK
receipt
• ignore retransmissions

• SampleRTT will vary, want estimated
RTT “smoother”
• average several recent

measurements, not just current
SampleRTT

TCP round trip time, timeout

61

EstimatedRTT = (1-a)*EstimatedRTT + a*SampleRTT

§ exponential weighted moving average (EWMA)
§ influence of past sample decreases exponentially fast
§ typical value: a = 0.125

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

DevRTT = (1-𝜷)*DevRTT + 𝜷 *|SampleRTT- EstimatedRTT|

TCP reliable data transfer

62

§ TCP creates reliable data transfer service on top of IP’s
unreliable service
• pipelined segments
• cumulative acks
• single retransmission timer

§ retransmissions triggered by:
• timeout events
• duplicate acks

TCP sender events

63

data rcvd from app:

§ create segment with seq #

§ seq # is byte-stream number
of first data byte in segment

§ start timer if not already
running
• think of timer as for oldest

unacked segment
• expiration interval:
TimeOutInterval

timeout:
• retransmit segment that

caused timeout
• restart timer
ack rcvd:
• if ack acknowledges previously

unacked segments
• update what is known to be

ACKed
• start timer if there are still

unacked segments

TCP Receiver ACK generation [RFC 1122, RFC 2581]

64

event at receiver

arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

arrival of in-order segment with
expected seq #. One other
segment has ACK pending

arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

arrival of segment that
partially or completely fills gap

TCP receiver action

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

immediately send single cumulative
ACK, ACKing both in-order segments

immediately send duplicate ACK,
indicating seq. # of next expected byte

immediate send ACK, provided that
segment starts at lower end of gap

TCP: retransmission scenarios

65lost ACK scenario

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8 bytes of data

Xtim
eo

ut

ACK=100

premature timeout

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8
bytes of data

tim
eo

ut

ACK=120

Seq=100, 20 bytes of data

ACK=120

SendBase=100

SendBase=120

SendBase=120

SendBase=92SendBase=92

SendBase=100

TCP: retransmission scenarios

66

X

cumulative ACK

Seq=92, 8 bytes of data

ACK=100

Seq=120, 15 bytes of data

tim
eo

ut

Seq=100, 20 bytes of data

ACK=120

TCP fast retransmit

67

§ time-out period often relatively long:
• long delay before resending lost packet

§ detect lost segments via duplicate ACKs.
• sender often sends many segments back-to-back

• if a segment is lost, there will likely be many
duplicate ACKs.

§ TCP fast retransmit
• if sender receives 3 duplicates ACKs for same data,

resend unacked segment with smallest seq #
§ likely that unacked segment lost, so don’t wait

for timeout

X

Host BHost A

Seq=92, 8 bytes of data

ACK=100

tim
eo

ut

ACK=100

ACK=100
ACK=100

Seq=100, 20 bytes of data

Seq=100, 20 bytes of data

Flow control

§ receive side of a connection has a
receive buffer:

§ app process may be slow at reading from
buffer

68

§ speed-matching service:
matching the send rate to the
receiving app’s drain rate

sender won’t overflow
receiver’s buffer by

transmitting too much,
too fast

flow control

rwnd

TCP flow control

69

§ spare room in buffer = rwnd

source port # dest port #

application
data

(variable length)

sequence number
acknowledgement number

receive window

Urg data pointerchecksum
FSRPAUhead

len
not

used

options (variable length)

rwnd

LastByteSent – LastByteAcked ≤ rwnd

rwnd = RcvBuffer – [LastByteRcvd – LastByteRead]

Sender:

Receiver:

Connection Management

70

2-way handshake failure scenarios:

Connection Management

71

2-way handshake failure scenarios:

retransmit
req_conn(x)

ESTAB

req_conn(x)

half open connection!
(no client!)

client
terminates

server
forgets x

connection
x completes

retransmit
req_conn(x)

ESTAB

req_conn(x)

data(x+1)

retransmit
data(x+1)

accept
data(x+1)

choose x req_conn(x)
ESTAB

ESTAB

acc_conn(x)

client
terminates

ESTAB

choose x req_conn(x)
ESTAB

acc_conn(x)

data(x+1) accept
data(x+1)

connection
x completes server

forgets x

TCP 3-way handshake

72

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

SYNbit=0, Seq=x+1
ACKbit=1, ACKnum=y+1

received SYNACK(x)
indicates server is live;
send ACK for SYNACK;

this segment may contain
client-to-server data received ACK(y)

indicates client is live

SYN_SENT

ESTAB

SYN_RCVD

client state

CLOSED

server state

LISTEN

TCP: closing a connection

73

FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1
wait for server

close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

timed wait

CLOSED

FIN_WAIT_1 FINbit=1, seq=xcan no longer
send but can
receive data

clientSocket.close()

client state server state
ESTABESTAB

Outline

§ Overview of transport-layer services

§ Connectionless Transport: UDP

§ Principles of reliable data transfer

§ Connection-Oriented Transport: TCP

§ TCP congestion control

74

Principles of congestion control

congestion:
§ informally: “too many sources sending too much data too fast for

network to handle”
§ different from flow control!
§ manifestations:
• lost packets (buffer overflow at routers)
• long delays (queueing in router buffers)

§ a top-10 problem!

75

Causes/costs of congestion: scenario 1

76

§ two senders, two receivers

§ one router, infinite buffer

§ router link capacity: R

§ no retransmission

unlimited shared
output link buffers

Host A

Host B

Causes/costs of congestion: scenario 1

77

§ two senders, two receivers

§ one router, infinite buffer

§ router link capacity: R

§ no retransmission

• maximum per-connection
throughput: R/2

unlimited shared
output link buffers

Host A

original data: lin

Host B

throughput: lout

R/2

R/2

l o
ut

lin R/2

de
la

y

lin
v large delays as arrival rate

approaches capacity

• one router, finite buffer
• sender retransmits timed-out packets

• transport-layer input includes retransmissions: 𝜆′in ≥ 𝜆in

finite shared output
link buffers

Host A

lin : original data

Host B

loutl'in: original data, plus
retransmitted data

Causes/costs of congestion: scenario 2

Causes/costs of congestion: scenario 2

§ Idealization: perfect sender
• sender sends only when router’s buffer has free space
• 𝜆′in = 𝜆in

§ Idealization: known loss
• packets can be lost, dropped at router due to full buffer
• sender only resends if packet known to be lost
• cost of congestion: more work (retrans) for given “goodput”, 𝜆′in > 𝜆out

§ Realistic: duplicates
• packets can be lost and sender may time out prematurely
• cost of congestion: unneeded retransmissions (link carries multiple

copies of pkt)
79

R/2

R/2

l o
ut

𝜆′in

• four senders
• multi-hop paths
• timeout/retransmit
• all router links have capacity R

finite shared output
link buffers

Host A
Host B

Host C
Host D

Causes/costs of congestion: scenario 3

R2
R1

• four senders
• multi-hop paths
• timeout/retransmit
• all router links have capacity R

Q: what happens as 𝜆in and 𝜆′in
increase ?

finite shared output
link buffers

Host A lout Host B

Host C
Host D

lin : original data
l'in: original data, plus

retransmitted data

A: as B-D 𝜆in increases, all arriving A-
C pkts are dropped at R2, A-C
throughput goes to 0

Causes/costs of congestion: scenario 3

R2
R1

§ four senders
§ multi-hop paths
§ timeout/retransmit

Q: what happens as 𝜆in and 𝜆′in
increase ?

finite shared output
link buffers

Host A lout Host B

Host C
Host D

lin : original data
l'in: original data, plus

retransmitted data

A: as B-D 𝜆in increases, all arriving A-
C pkts are dropped at R2, A-C
throughput goes to 0

Causes/costs of congestion: scenario 3

R2
R1

another “cost” of congestion:
§ when packet dropped, any “upstream” transmission

capacity used for that packet was wasted!

R/2

l o
ut

𝜆′in

Causes/costs of congestion: scenario 3

Approaches to Congestion Control

§ End-to-end approach
• No explicit feedback from the network layer
• Indicators of network congestion

• packet loss: indicated by time out or three duplicate ACKs
• increasing round-trip delay

• Implemented by TCP

§ Network-assisted approach
• Routers provide explicit feedback
• Explicit Congestion Notification (ECN) has been proposed as

extensions to TCP and IP

84

TCP Congestion Control

§ End-to-end approach

§ Have each sender limit the transmission rate as a function of perceived
network congestion

• How to limit rate

• How to perceive congestion

• What algorithm to change rate

85

Sender’s congestion window

A “loss event”: either a timeout or the receipt of three
duplicate ACKs

Additive increase, multiplicative decrease (AIMD)

TCP Congestion Control: Congestion Window

86

§ sender limits transmission:

§ cwnd is dynamic, function of
perceived network congestion

TCP sending rate:
§ roughly: send cwnd bytes,

wait RTT for ACKs, then
send more bytes

last byte
ACKed sent, not-

yet ACKed
(“in-flight”)

last byte
sent

cwnd

LastByteSent – LastByteAcked ≤ min{cwnd,rwnd}

sender sequence number space

rate ~~
cwnd
RTT

bytes/sec

TCP Congestion Control: Self-Clocking

§ A loss event as an indication of congestion

• either a timeout or the receipt of three duplicate ACKs

§ Arrival of ACKs of previously unacked segments as an indication that
all is well

• Increase congestion window size (and transmission rate) more quickly if ACKs
arrive at a high rate

87

TCP Congestion Control: AIMD
§ approach: sender increases transmission rate (window size), probing for

usable bandwidth, until loss occurs
• additive increase: increase cwnd by 1 MSS (maximum segment size) every

RTT until loss detected

• multiplicative decrease: cut cwnd in half after loss

88

AIMD saw tooth
behavior: probing

for bandwidth

additively increase window size …
…. until loss occurs (then cut window in half)

c
w
n
d
:

TC
P

se
nd

er

co
ng

es
tio

n
w

in
do

w
 s

iz
e

time

Each sender acts on
local information
asynchronously

Slow Start

§ when connection begins, increase
rate exponentially until first loss
event:
• initially cwnd = 1 MSS
• double cwnd every RTT
• done by incrementing cwnd by 1 MSS

every time a segment is first ACKed

§ summary: initial rate is slow but
ramps up exponentially fast

89

Host A

one segment

R
TT

Host B

time

two segments

four segments

Congestion Avoidance

§ loss indicated by timeout:
• set ssthresh = cwnd/2, cwnd = 1 MSS

• window then grows exponentially (as in slow start) to ssthresh

• window then grows linearly (congestion avoidance)

• increase cwnd by 1 MSS every RTT

• done by incrementing cwnd by MSS × (MSS/cwnd) bytes for every new
ACK received

90

Fast Recovery

§ loss indicated by 3 duplicate ACKs:
• dup ACKs indicate network capable of delivering some segments
• set ssthresh = cwnd/2, cwnd = cwnd/2 + 3 MSS

• then increase cwnd by 1 MSS for every duplicate ACK received

• when an ACK arrives for the missing segment, set cwnd =
ssthresh, enters congestion avoidance
• Implemented in TCP Reno

§ TCP Tahoe always sets cwnd to 1 (timeout or 3 duplicate acks)

91

Fast Recovery: Example

92

W = 32 W = 32/2+3 = 19 W = 32/2 = 16

Host A

Host B

See Figure 7.9 in Jean Walrand and Shyam Parekh, Communication Networks: A Concise Introduction

http://www.morganclaypool.com/doi/abs/10.2200/S00254ED1V01Y201002CNT004%3FjournalCode=cnt

Summary: TCP Congestion Control

93

timeout
ssthresh = cwnd/2

cwnd = 1 MSS
dupACKcount = 0

retransmit missing segment

L
cwnd > ssthresh

congestion
avoidance

cwnd = cwnd + MSS (MSS/cwnd)
dupACKcount = 0

transmit new segment(s), as allowed

new ACK.

dupACKcount++
duplicate ACK

fast
recovery

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3

retransmit missing segment

dupACKcount == 3

timeout
ssthresh = cwnd/2
cwnd = 1
dupACKcount = 0
retransmit missing segment

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3cwnd = ssthresh
dupACKcount = 0

New ACK

slow
start

timeout
ssthresh = cwnd/2

cwnd = 1 MSS
dupACKcount = 0

retransmit missing segment

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s), as allowed

new ACKdupACKcount++
duplicate ACK

L
cwnd = 1 MSS

ssthresh = 64 KB
dupACKcount = 0

New
ACK!

New
ACK!

New
ACK!

TCP throughput

§ avg. TCP thruput as function of window size, RTT?
• ignore slow start, assume always data to send

§ W: window size (measured in bytes) when loss
occurs
• When loss occurs, window is cut in half and then

increases by MSS every RTT until it again reaches W

• avg. window size is 0.75 W

• avg TCP thruput = !.#$%
&''

bytes/sec

94

W

W/2

TCP Fairness

95

fairness goal: if K TCP sessions share same bottleneck link
of bandwidth R, each should have average rate of R/K

TCP connection 1

bottleneck
router

capacity RTCP connection 2

Why is TCP fair?

two competing sessions with same MSS and RTT:
§ additive increase gives slope of 1, as throughout increases
§ multiplicative decrease decreases throughput proportionally

96

R

R

equal bandwidth
share

Connection 1 throughput

C
on

ne
ct

io
n

2
th

ro
ug

hp
ut

congestion avoidance: additive increase

loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

A

B

C

D

full bandwidth
utilization line

Summary
§ Transport-layer services

• service model, multiplexing/demultiplexing

§ Connectionless Transport: UDP
• checksum

§ Principles of reliable data transfer
• rdt 3.0, GBN, SR

§ Connection-Oriented Transport: TCP
• reliable data transfer, flow control, connection setup

§ TCP congestion control
• TCP Reno, throughput, fairness

97

