
Efficient MART-Aided Modeling for Microarchitecture
Design Space Exploration and Performance Prediction

Bin Li

Department of Experimental Statistics
Louisiana State University
Baton Rouge, LA 70803

bli@lsu.edu

Lu Peng
Electrical & Computer Engineering

Louisiana State University
Baton Rouge, LA 70803

lpeng@lsu.edu

Balachandran Ramadass
Electrical & Computer Engineering

Louisiana State University
Baton Rouge, LA 70803
bramad2@lsu.edu

ABSTRACT
Computer architects usually evaluate new designs by cycle-
accurate processor simulation. This approach provides detailed
insight into processor performance, power consumption and com-
plexity. However, only configurations in a subspace can be simu-
lated in practice due to long simulation time and limited resource,
leading to suboptimal conclusions which might not be applied in a
larger design space. In this paper, we propose an automated per-
formance prediction approach which employs state-of-the-art
techniques from experiment design, machine learning and data
mining. Our method not only produces highly accurate estima-
tions for unsampled points in the design space, but also provides
interpretation tools that help investigators to understand perform-
ance bottlenecks. According to our experiments, by sampling only
0.02% of the full design space with about 15 millions points, the
median percentage errors, based on 5000 independent test points,
range from 0.32% to 3.12% in 12 benchmarks. Even for the
worst-case performance, the percentage errors are within 7% for
10 out of 12 benchmarks. In addition, the proposed model can
also help architects to find important design parameters and per-
formance bottlenecks.

Categories and Subject Descriptors
C.4 [PERFORMANCE OF SYSTEMS] - Measurement tech-
niques; Modeling techniques.

General Terms
Measurement, Performance, Design, Experimentation.

Keywords
Design Space Exploration; Performance Prediction; MART-
Aided Models.

1. INTRODUCTION
Computer architects usually evaluate new designs by employing
cycle-accurate processor simulators which provide detailed in-
sight into processor performance, power consumption and com-
plexity. A huge design space is composed by the product of the
choices of many microarchitectural design parameters such proc-
essor frequency, issue width, cache size/latency, branch predictor
settings, etc. To achieve an optimal processor design, a wide con-

figuration spectrum of the design space has to be tested before
making a final decision. However, only configurations in a sub-
space can be simulated in practice due to long simulation time and
limited resource, leading to suboptimal conclusions which might
not be applied in the whole design space. In addition, more pa-
rameters brought by chip-multiprocessors make this problem
more urgent [2][3].

In this paper, we propose to use the state-of-the-art tree-based
predictive modeling method combining with advanced sampling
techniques from statistics and machine learning to explore the
microarchitectural design space and predict the processor per-
formance. This bridges the gap between simulation requirements
and simulation time/resource costs. The proposed method in-
cludes the following four components: (1) the maximin space-
filling sampling method that selects the initial design representa-
tives from among a large amount of design alternatives; (2) the
state-of-the-art predictive modeling method Multiple Additive
Regression Trees (MART) [1] that builds a nonparametric model
with exceptional accuracy while remaining remarkably robust; (3)
an active learning method that selects the most informative design
points needed to improve the prediction accuracy sequentially; (4)
interpretation tools for MART-fitted models that shows the im-
portance and partial dependence of design parameters.

According to our experiments on 12 SPEC benchmarks, by sam-
pling 3000 points drawn from a microarchitecture design space
with nearly 15 million configurations (sampled up to 0.02 percent
of the full design space) for each program, we can summarize the
following results:
1. Performance Prediction: Application-specific models pre-

dict performance, based on 5000 independent sampled de-
sign points, with median percentage error ranges from 0.32%
to 3.12% (average percentage error ranges from 0.41% to
4.18%).

2. Worst-Case Performance: the worst percentage errors are
within 7% for 10 out of 12 benchmarks. The largest worst
case percentage error of our proposed method is 22.55% for
art. This is still much better than that of linear regression
model which has a worst case percentage error 87.69%.

3. Model Interpretation: The proposed model shows that sev-
eral design factors are more important than others:
Fetch/Issue/Commit width and the number of ALU units, L2
cache size and branch predictor types and sizes. It also finds
a performance bottleneck resulting from a relative small
number of LSQ entries.

Copyright is held by the author/owner(s).
SIGMETRICS’ 08, June 2-6, 2008, Annapolis, Maryland, USA.
ACM 978-1-60558-005-0/08/06.

2. METHODOLOGY
In experiment design, the distance-based space-filling sampling
methods are popular, especially, when we believe that interesting
features of the true model are just as likely to be in one part of the
experimental region as another. Among them, the maximin dis-
tance design is commonly used. However, since some of the ar-
chitectural design parameters are nominal (no intrinsic ordering
structure) and the others are discrete (having a small number of
values), we use the following defined distance before applying the
maximin distance criterion. Let be the weight for the jth

design parameter.
jwt

 () ([]∑
=

≠×=
p

j
jjj xxIwtd

1
2121 , xx)

where ()parameterdesign for levels ofnumber log2
th

j jwt = and

()AI is an indicator function, equal to one when A holds, other-
wise zero. Note that the weight for each design parameter is equal
to its information entropy with uniform probability for each of its
possible values.

In our method, a small number of initial design points are selected
based on the Maximin distance criterion (maximize the shortest
distance among selected points). The processor performance is
measured via benchmark simulations on the selected design
points. Then, MART is applied 20 times on the sampled points
with random perturbation. The reason to use MART, an ensemble
of trees, is the following: (1) trees are inherently nonparametric
and can handle mixed-type of input variables naturally, i.e. no
assumptions are made regarding the underlying distribution of
values of the input variables, as well as categorical predictors with
either ordinal or non-ordinal structure; (2) trees are adept at cap-
turing non-additive behavior, i.e. complex interactions among
predictors are routinely and automatically handled with relatively
little input required from the analyst; (3) MART improves the
prediction performance from a single tree by using an ensemble
of trees.

Adaptive sampling, also known as active learning in machine
learning literature, involves sequential sampling schemes that use
information gleaned from previous observations to guide the sam-
pling process. Studies have shown that adaptively selecting sam-
ples in order to learn a target function can outperform conven-
tional sampling schemes. In our method, for each of the MART-
fitted model, it predicts the rest of the points in the design space.
Sort these points according to the coefficient of variance (CoV,
the ratio of standard deviation to mean) for the model prediction.
Selected the points with maximal CoV (under minimal pairwise-
distance constrain) and measure their performance. Repeat the
underlined adaptive sampling process above until some stopping
criterion is met (e.g. time limit and user pre-specified number of
iterations).

3. EXPERIMENTAL RESULTS
We modified sim-outorder, the out-of-order pipelined simulator in
SimpleScalar, to be an eight-stage Alpha-21264 like pipeline.
Twelve (eight integer and four floating point) CPU and memory
intensive programs from SPEC2000 were selected. To show the
typical behavior, we skipped a number of instructions for each

SPEC program based on a previous work [4]. Then we collected
the number of execution cycles for the next 100 million instruc-
tions. The total design space for each workload is about 15 mil-
lion configurations composed of the cross product of 13 design
parameter choices. For each workload, 500 initial design points
are sampled based on the maximin distance criterion described in
Section 2. Then another 500 points are sampled according to the
adaptive sampling scheme described in Section 2. Repeat the
sampling process until 3000 design points were sampled for each
benchmark. Notice that for 3000 points, we only explored ap-
proximately 0.02% of the total 15 million points in the design
space. An independent test set which consists of 5000 points is
used to evaluate the prediction performance of fitted models. The
following table shows the average percentage errors (PE) on
twelve benchmarks with roughly 0.0067%, 0.0133% and 0.02%
space sampled. The mean PE ranges from 0.41% to 4.18% for the
12 benchmarks. For the worst-case performance, the percentage
errors are within 7% for 10 out of 12 benchmarks. The results
indicate that our model achieves highly accurate prediction and
robustness under the worst-case situation.

Table 1: Summary of performance prediction error with specified
error and percentage of full space sampled. Max PE is the maxi-
mum percentage error among the 5000 test points.

4. REFERENCES
[1] J. Friedman, “Greedy function approximation: a gradient

boosting machine,” The Annals of Statistics, 29: 1189-1232,
2001.

[2] E. İpek, S.A. McKee, B.R. Supinski, “M. Schulz and R.
Caru-ana. Efficiently exploring architectural design spaces
via predictive modeling,” ASPLOS XII, Oct. 2006.

[3] B. Lee and D. Brooks, “Accurate and efficient regression
modeling for microarchitectural performance and power pre-
diction,” ASPLOS XII, Oct. 2006.

[4] S. Sair, M. Charney, "Memory Behavior of the SPEC2000
Benchmark Suit," Tech. Report, IBM Corp. Oct. 2000.

0.0067% 0.0133% 0.020%

Bench
mark

Mean
(%)

Max
(%)

Mean
(%)

Max
(%)

Mean
(%)

Max
(%)

art 6.299 42.79 4.633 24.95 4.179 22.55
bzip 0.734 4.496 0.460 3.328 0.406 3.165

crafty 1.623 13.10 1.018 7.171 0.865 5.529
equake 2.654 18.69 2.260 15.77 2.130 15.04
fma3d 0.912 5.426 0.704 3.362 0.625 2.964

gcc 0.740 4.044 0.491 3.024 0.426 2.256
mcf 0.668 4.988 0.501 4.217 0.456 4.236

parser 0.831 4.905 0.515 3.649 0.420 2.305
swim 1.442 9.588 0.905 5.937 0.659 4.627
twolf 1.826 10.35 1.380 7.533 1.227 6.315
vortex 1.359 13.07 0.925 7.112 0.800 6.885

vpr 0.983 6.929 0.616 4.533 0.529 4.323

	C.4 [PERFORMANCE OF SYSTEMS] - Measurement techniques; Modeling techniques.
	1. INTRODUCTION
	2. METHODOLOGY
	3. EXPERIMENTAL RESULTS
	4. REFERENCES

