
 1

Signature Buffer:  Bridging Performance Gap between Registers and Caches 
 

 
Lu Peng     Jih-Kwon Peir            Konrad Lai 

    Computer Information Science & Eng.     Microprocessor Research Lab. 
University of Florida             Intel Corporation 

  {lpeng,peir}@cise.ufl.edu        konrad.lai@intel.com 
 

 
Abstract 

 
Data communications between producer instructions 

and consumer instructions through memory incur extra 
delays that degrade processor performance. In this paper, 
we introduce a new storage media with a novel addressing 
mechanism to avoid address calculations. Instead of a 
memory address, each load and store is assigned a 
signature for accessing the new storage. A signature 
consists of the color of the base register along with its 
displacement value. A unique color is assigned to a 
register whenever the register is updated. When two 
memory instructions have the same signature, they 
address to the same memory location. This memory 
signature can be formed early in the processor pipeline. A 
small Signature Buffer, addressed by the memory 
signature, can be established to permit stores and loads 
bypassing normal memory hierarchy for fast data 
communication. Performance evaluations based on an 
Alpha 21264-like pipeline using SPEC2000 integer 
benchmarks show that an IPC (Instruction-Per-Cycle) 
improvement of 13-18% is possible using a small 8-entry 
signature buffer. 

 

1.  Introduction 
 

Program execution obeys a sequence of instructions that 
operate on a collection of data. Data communication 
among instructions usually goes through storages that save 
intermediate values from a producer instruction for future 
consumer instructions. Two types of storages, registers and 
memory, are available in a processor. A small number of 
architecture registers can supply data for operations 
seamlessly. Memory, on the other hand, is large and slow, 
even with caches that enable fast accesses for recently 
used data. Due to the disparity of speeds, modern 
processors permit instructions to only directly operate on 
data from registers, and use loads and stores to move the 
data between memory and registers. Therefore, data 
communication among instructions goes through an 
indirect path:  producer � store � load � consumer. 

In spite of mapping as many program locations to 
limited registers as possible by the compiler, it is 
inevitable to use memory for data communication. Due to 
a load often encountered right before the consumer needs 
for efficient usage of registers and its inherent delays in 
generating the address and accessing large storages, loads 
along with their dependent instructions are likely located 
on the program’s critical path [22]. The performance 
penalty of load latency will worsen in future processors. 
As the feature size continues to shrink and clock speed 
approaches 10 GHz, it is estimated that the access time of 
a 64KB first-level cache (L1) will take three to seven 
cycles according to different clock scaling factors using a 
35nm technology [1]. Simulation studies show that each 
additional cycle in accessing the L1 data cache degrades 
the overall IPC by about 3.5% on an Alpha 21264-like 
pipeline running SPEC2000 integer programs.  

To achieve a zero-cycle load, i.e. the load and its 
dependent instructions can be fetched, dispatched and 
executed at the same time; we introduce a new storage 
structure that can be accessed in early pipeline stages. The 
new storage has a very small physical structure to enable 
fast access time. In addition, it uses a novel addressing 
mechanism to avoid any address calculation. Each load 
and store uses a signature for accessing the new storage. A 
signature consists of the color of the base register along 
with the displacement value. Each color represents a 
unique instance of the base register. A new color is given 
whenever the content of the register is updated.  When two 
memory instructions have the same color, they address 
memory locations with the same base register and base 
address. In this case, the displacement value correctly 
identifies the data item with respect to the base address. A 
small Signature Buffer (SB) addressed by the memory 
signature can be established to provide data for memory 
operations non-speculatively. Accessing the SB is initiated 
early in the pipeline after a memory instruction is fetched 
and decoded since the signature can be formed without 
accessing the register file. 

 Memory dependences or correlations of store-load or 
load-load are preserved with signatures. This property 
exists in many program constructs such as accessing global 
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and local variables, saving/restoring registers during 
procedure/function calls, referencing structure records 
using pointers in linked data structures, or accessing array 
elements in loop iterations. Performance evaluations based 
on the SPEC2000 integer benchmarks running on an Alpha 
21264-like processor model show that 70% of the loads 
can benefit from a small 8-entry SB to reduce access 
latency. This latency reduction translates to about 13-18% 
IPC (Instruction-Per-Cycle) improvement.   

The remaining paper is organized as follows. The 
motivations and important observations for the proposed 
method will be described in section 2. This is followed by 
discussions of design and related issues for establishing 
the SB in Section 3.  In Section 4, performance evaluations 
of the IPC improvement as well as the SB hit ratios are 
given. Several design parameters and alternatives for the 
SB are also evaluated. A few related works on hiding 
cache latency will be given in Section 5. Finally, Section 6 
concludes the paper. 
 

2.  Memory Reference Correlations 
 

Store-load and load-load memory dependences can be 
correlated directly by the signature if they use the same 
base register with the same displacement value as long as 
the base registers have an identical content (i.e. the same 
color). Memory references also exhibit strong spatial 
locality using the signature as nearby memory references 
often differ only by a small quantity of the displacement 
value. In this section, we provide two programming 
examples from SPEC2000 integer programs to describe 
qualitatively the existence of such store-load and load-load 
signature correlations and signature reference locality in 
real programs. In Figure 1, an example function 
copy_disjunct from Parser is given. This function is 
invoked many times to build a new copy of a disjunct list. 
The second example bsW is extracted from Bzip (Figure 
2). This function is also invoked multiple times to perform 
bit-stream I/Os. The store/load signature correlation and 
reference locality can be observed in several program 
constructs.  

Access Records in Linked Data Structures: As shown 
in Figure 1, the pointers d, d1 are used to copy and 
construct a new node in the linked structure. Different 
records (also pointers in this case) in each node of the old 
and the new linked structures are accessed using pointers 
d, d1. In the assembly code, the two pointers are loaded in 
registers $s0, $s1 and are used as the base registers to 
access these variations of records with small displacement 
values. The signature correlation and reference locality 
among these memory accesses are clearly demonstrated. 

Register Save and Restore in Functions:  In example 
I, strong spatial locality exists when restoring register 
contents in function copy_disjunct. In addition, store-load 

signature correlations exist with matched base register $sp   
and displacement value for saving and restoring register 
contents without intervening function calls. The 
invocations of xalloc and copy_connectors may change the 
color of the $sp, but the original content of the $sp is 
restored after returning from the function calls to address 
caller’s stack frame. 

Access Array Variables:  Similar store/load 
correlations are also observed in accessing array data 
structures in other program code. For example, intensive 
array accesses are observed in several functions, such as 
_word_fwd_aligned() in wordcopy.c in Gcc of SPEC2000. 
Nearby references to the same or different elements of the 
same array with the same base address provide signature 
correlations of stores and loads. 

Access Global Variables:  As shown in Figure 2, three 
global variables, bsBuff, bsLive and bytesOut are accessed 
when the function bsW is invoked. Due to the limited 
registers, these variables are loaded/stored multiple times 
based on the same global pointer $gp with a constant base 

 Disjunct * copy_disjunct(Disjunct * d) {
    Disjunct * d1;
    if (d == NULL) return NULL;
    d1 = (Disjunct *) xalloc(sizeof(Disjunct));
    *d1 = *d;
    d1->next = NULL;
    d1->left = copy_connectors(d->left);
    d1->right = copy_connectors(d->right);
    return d1;
 }

 copy_disjunct:
addiu $sp,$sp,-32
sw $s1,20($sp)
addu $s1,$0,$a0
sw $ra,24($sp)
sw $s0,16($sp)
beq $s1,$0,<copy_disjunct>
addiu $a0,$0,20
jal <xalloc>
addu $s0,$0,$v0
lw $v0,0($s1)
lw $v1,4($s1)
lw $a0,8($s1)
lw $a1,12($s1)
sw $v0,0($s0)
sw $v1,4($s0)
sw $a0,8($s0)
sw $a1,12($s0)
lw $v0,16($s1)
sw $v0,16($s0)
sw $0, 0($s0)
lw $a0,12($s1)
jal <copy_connectors>
......
lw $ra,24($sp)
lw $s1,20($sp)
lw $s0,16($sp)
addiu $sp,$sp,32
jr $ra

Register save/
restore

Access linked
records

  
Figure 1.  Example I - Source and Assembly Codes of 
Function copy_disjunct from Parser 
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address. The access of global variables exhibits both 
signature correlations and spatial locality. 

 
Access Local Variables:  In the bsW, the callee-saved 

registers $s0 and $s1 are freed up for local usages to avoid 
saving parameters of n and v from registers $a0 and $a1 to 
the local stack frame and retrieving them later for 
computations. However, in functions that involve more 
complex computations and/or more temporary local 
variables, it is inevitable to increase the local stack 
accesses using the stack pointer $sp and/or the frame 
pointer $s8 as base registers. Such accesses to the small 
stack frame usually display signature correlations and 
spatial locality. 

General Save/Restore Base Registers:  There is 
evidence that even if the base register has been updated 
between two memory accesses, the content of the base 

register may stay the same. A base register may be freed up 
for other usages and the original base address is restored 
before the next memory reference. In Figure 2, we also 
include a partial assembly code from a caller 
SendMTFValues of the bsW.  In this caller, $s1 is used as a 
base register before calling the bsW. After returning from 
the bsW, $s1 is restored and continues to be used as a base 
register.  

Passing Pointers among Multiple Functions:  We 
also observe in other programs, e.g. Mcf, that register class 
$a is sometimes used to pass pointers among several levels 
of function calls. The pointer in $a is used as the base 
register in several functions without any save/restore the 
content of $a. As a result, the same color for $a is 
maintained across multiple functions to keep the signature 
correlation alive. 

#define bsNEEDW(nz)
{
   while (bsLive >= 8) {
      spec_putc (

(UChar)(bsBuff >> 24),
         bsStream );
      bsBuff <<= 8;
      bsLive -= 8;
      bytesOut++;
   }
}

Caller (SendMTFValues) of bsW:

......
lbu $v0, 0($s1)
......
lbu $v0, 0($v0)
......
lw $a1, 0($v1)
jal <bsW>
lbu $v1, 0($s1)
......

(c)

Access global variables

Callee save/restore

INLINE void bsW ( Int32 n, UInt32 v )
{
   bsNEEDW ( n );
   bsBuff |= (v << (32 - bsLive - n));
   bsLive += n;
}

(a)

bsW:  lw $v0,-32124($gp)
      addiu $sp,$sp,-32
      sw $s0,16($sp)
      addu $s0,$0,$a0
      sw $s1,20($sp)
      addu $s1,$0,$a1
      sw $ra,24($sp)
      slti $v0,$v0,8
      bne $v0,$0, <L2>
L1:   lbu $a0,-32144($gp)
      lw $a1,-32100($gp)
      jal <spec_putc>
      lw $v0,-32144($gp)
      lw $v1,-32124($gp)
      lw $a0,-32116($gp)
      ......
      beq $v1,$0,<L1>
L2:   addiu $v0,$0,32
      lw $a0,-32124($gp)
      subu $v0,$v0,$s0
      lw $v1,-32144($gp)
      subu $v0,$v0,$a0
      sllv $v0,$s1,$v0
      or $v1,$v1,$v0
      addu $a0,$a0,$s0
      sw $v1,-32144($gp)
      sw $a0,-32124($gp)
      lw $ra,24($sp)
      lw $s1,20($sp)
      lw $s0,16($sp)
      addiu $sp,$sp,32
      jr $ra

(b)

Figure 2.  Example II - Source and Assembly Codes of Function bsW from Bzip. (a) Source Code;  (b) Assembly 
Code;  (c) Caller of bsW 
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3.  Establishing A Signature Buffer 
 

In Figure 3, a load is used to illustrate the basic design 
of the Signature buffer (SB). Besides a small, fully-
associative SB, correct signatures for memory instructions 
can be established using a Color Register (CR) and a 
Current Color Table (CCT). The CR keeps the next 
available color and the CCT records the current color of 
each register. Initially, each CCT entry is set to the 
corresponding ID (from 0 to 31) of each register, while the 
content of CR is set to 32 (assuming 32 base registers). 
When a load is decoded in-order, the current color of the 
base register (R1) is fetched from the CCT. The color is 
concatenated with the displacement value from the 
encoding bits of the load to form the signature. 
Meanwhile, the new color of the destination register (R2) 
is updated from the CR and the CR is incremented 
afterwards. This new color assignment takes place for all 
instructions that involve a register update. To guarantee 
correct data access, all assigned colors along with the SB 
are flushed when the color has reached its maximum value 
and is wrapped around to the initial value. Essentially, a 
base register is renamed to a new color upon an update to 
the register. When two memory moves have the same 
color, they always have the same base address. Note that 
this coloring technique conservatively assigns a register 
value without accessing the register file to avoid delays 
and any stall due to base register updates.  

 
The signature buffer is always accessed in-order after 

the signature is formed. When the signature of a load 
matches the signature of a line in the SB, the data can be 
obtained non-speculatively from the SB. This is similar to 
a virtually addressed cache such that a match of the virtual 
address guarantees the correct data found in the cache [6]. 
The SB can be thought as a virtual cache using the 
signature as the virtual address. Since the SB is accessed 

right after the load is decoded, it is conceivable that load 
dependents can also be fetched and issued without any 
delay. Several design issues of the SB will be discussed in 
subsequent sub-sections. 

 
3.1.  Data Alignment 
 

The low-order bits in the signature, i.e. the offset bits 
within a signature line, may not be the same as the offset 
bits in the real memory address. In order to exploit the 
spatial reference locality, the cache line fetched from the 
first-level cache (L1) needs to be rearranged in the SB to 
align with the memory signature. The basic alignment 
algorithm works as follows. When a memory request 
misses the SB, the target cache line is fetched. The target 
byte/word is placed in the SB according to offset bits of 
the signature.  For example, assume there are eight units in 
a cache line as shown in Figure 4. The signature offset of 
the target unit is 001, but the offset of the real address is 
100.  In this case, the target data 100 is loaded into unit 
001 in the SB, and remaining units are loaded according to 
their relative position to the target unit. Each SB line may 
contain a part of two consecutive L1 lines. We refer these 
two parts as the High and the Low partitions. In the 
example in Figure 4, the partial SB line fill is located in 
the Low partition of the SB line. 

Due to the alignment, there are two options to fill an SB 
line. The straightforward option is to fill only a partial SB 
line and drop the extra data from the target L1 line. Other 
options include fetching the second L1 cache line to fill the 
entire SB line, and/or to place the extra-unaligned L1 data 
into the 2nd SB line to further benefit spatial locality. 

 
3.2.  Handling Signature Synonym 

One essential issue in designing the SB is to handle the 
synonym of memory signatures when two distinct 
signatures are mapped to the same memory address. This 
synonym problem has some similarity with that in virtual 
caches. In addition to the signature tag, the corresponding 
L1 address tag is also saved in the SB directory. After the 
memory address is generated upon an SB miss, a match 
through L1 address tags in the SB can identify any 
signature synonym. A synonym hit occurs if the line is 

111 110 101

010 001 000

001 000010011100

011100101110111

Alignment

SB Line (partial)

L1 Cache LIne Extra Data

Unfilled Data

 

Figure 4.  Data Alignment in Signature Buffer 

Load    R2, 100 (R1)

DisplacementColor

Color Register

Incrementer

Current Color
Table (CCT)

R0

R1

R2

R3

Signature Buffer (SB)

Signature

 

Figure 3.  Memory Signature and Signature Buffer 
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located in the SB under a signature with a different color. 
In this case, the line is invalidated from the old and moved 
to the new locations. Given that the proposed SB is fully-
associative with small number of lines, the SB synonym 
can simply be managed by snooping the SB on every 
replacement. Virtual caches with set-associative design 
require extra hardware to resolve synonyms.  

However, signature synonym is complicated by the fact 
that each signature line may be aligned to have a portion of 
two consecutive L1 cache lines. Care must be taken to 
distinguish a synonym hit and to invalidate the line from 
two possible SB locations. The detailed procedure is 
described as we walk through the following example.  

In Figure 5, the contents of the SB along with the data 
alignment between the SB and the L1 cache lines are 
illustrated. The SB directory records the signature tag, the 
L1 address tag, the validity bits, and the boundary of High 
and Low partitions. An SB hit is identified when the tag 
matches and the target High/Low partition is valid. The 
boundary of the partition determines the High/Low 
partition. Recall that due to the data alignment, the 
High/Low partitions indicate two data regions from two L1 
cache lines. These two lines must be consecutive because 
each L1 line cannot exist in the SB with two different 
colors (i.e. a synonym case). Therefore, only a single L1 
address tag is recorded in the SB directory. 

 

Assume that three consecutive memory requests with 
signatures: A-001, A-101, and B-010 are issued, where the 
binary bits represents the target unit in each signature line. 
All three requests have an identical color, and A, B are two 
consecutive signature lines. These requests are mapped to 
the corresponding L1 lines: C-100, D-000, and D-101 in 
the L1 cache, where C and D are adjacent lines. Based on 
the data alignment, the most significant 5 units of line C 
are loaded to the SB for the first request. A simple 2's 
compliment subtraction of the L1 unit ID from the SB unit 
ID can determine the High/Low partition and the correct 
boundary. For the first request, (0,001 - 0,100 = 0,001 + 
1,100 = 1,101); the result sign bit ‘1’ indicates the 
partition is ‘Low’, and the magnitude ‘101’ is the 
boundary. (Detailed arithmetic reasoning is omitted.)  The 
L1 address tag, the corresponding valid bit, and the 
boundary 101 are recorded in the SB tag array.  

The second request is also a miss even though tag A 
matches because the target unit 101 is in the invalid 
partition. Only the less significant 3 units of L1 line D are 
loaded to the most significant 3 units of signature line A. 
Both valid bits of the High/Low partitions of A are now 
set. The third request addresses a different signature line 
B, and causes another miss. Again, according to the 
alignment, the most significant 5 units of line D are loaded 
to the lower 5 units of line B in the SB. Next, the fourth 
request to a signature line X is issued and misses the SB. 
This request is mapped to D in the L1 cache with a 
different color than that of A and B. Now, a synonym hit is 
detected and D must be invalidated from the SB. Two 
invalidations are needed, one on the High partition of A 
and the other on the Low partition of B. 
 
3.3.  Memory Dependence Disambiguation and 
Data Forwarding 
 

The SB and the L1 cache are updated when stores are 
committed. To shorten memory dependence latency, the 
stored data can be forwarded to dependent loads before the 
store is committed. This store-load forwarding through the 
Load Store Queue (LSQ) has been applied to bypass the L1 
data cache. The store-load dependence can be resolved 
based on the address comparison. This dependence 
resolution is more critical with the SB for two reasons. 
First, upon an SB hit, a load may have to wait for any 
uncommitted store ahead of the load in the LSQ. The 
uncertainty of memory dependences may hinder the load 
and degrades the advantage of fetching data from the SB. 
Second, early resolution of store-load forwarding allows 
bypassing the SB. Using the signature instead of the 
address, certain memory dependences can be resolved in 
parallel with the SB access. Several steps using an 
expanded LSQ to alleviate this memory dependence delay 
are summarized below. 

• Early store-load forwarding:  When a load has an 

SB tag Valid Bound

Tag

101

101A

B

C

D

V-V

I-V

000

101 001

010

101

100

SB Directory

L1 Tag Array

SB Data Array

L1 Data Array

 Reguests   (Signature):       A-001 A-101 B-010 X-000

(Real Address): C-100 D-000 D-101 D-000

L1 tag

C

D

 

Figure 5.  Tag Arrays and Data Alignment between SB 
and L1 Cache for 4 Consecutive Memory Requests;  A, 
B, X Are Signature Lines;  C, D Are L1 Cache Lines;  
Three Binary Bits Are Target Unit; “ Bound”  Denotes 
Boundary of  High / Low Partitions 
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identical signature with an early store in the LSQ, and 
there is no intervening store in between, the load bypasses 
the SB and gets the data from the early store. An 
intervening store has a different color and is a potential 
synonym to the load.  

• Early SB access with memory disambiguation: The 
SB is accessed after a load is fetched and decoded. The 
data obtained from the SB can trigger dependent 
instructions without delays if there is no intervening store 
ahead of the load in the LSQ. 

• Delayed SB access:  The SB is successfully accessed 
after memory dependence resolutions because of an 
existence of intervening stores 

• Forwarding from early SB misses:  When 
consecutive SB misses are to the same SB line, the later 
miss gets the forwarded data from the early miss. This 
forwarding can happen before the load address is 
computed. (This case is considered as a partial SB hit.)  

• Handling multiple SB misses to the same L1 line:  
When multiple SB misses with different colors to the same 
L1 line are detected through the LSQ search, later misses 
are blocked from accessing the L1 cache and the requested 
data will be forwarded when the first miss data is available 
from the L1. 

• Normal store-load forwarding:  When a load or a 
store address is computed, a search through the LSQ to 
identify the store-load forwarding is performed as the 
normal store-load forwarding. 

For better performance, aggressive early store-load 
forwarding and speculative use of the SB data are possible 
by predicting the existence of memory dependences with 
the cost of recovery upon mis-predictions. 

 
3.4.  Integrated Pipeline Microarchitecture 
 

The SimpleScalar pipeline is modified and expanded to 
accommodate performance studies of the SB [4]. Figure 6 
shows the baseline microarchitecture, which is more in-
line with the Alpha 21264 [13]. The dispatch stage in the 
SimpleScalar pipeline is partitioned into a 
Decode/Dependence and a Rename stages. In the 
Decode/Dependence stage multiple instructions are 
decoded, and dependences among instructions in the 
decode/issue packet are detected. The decoded instructions 

(micro-ops) are renamed to reorder buffer (RUU) entries 
at the Rename stage. The original issue/execute stage 
becomes a Schedule, a Register read, and an Execute 
stages to reflect the delays in scheduling, operands 
fetching, and execution. 

The two fast paths in the figure illustrate advantages 
with an integrated SB. A load can jump to the Writeback 
stage after the Rename stage on an SB hit or an early store-
load forwarding as indicated by the Bypass I. Here we 
assume the SB access is completed in the 
Decode/Dependence and the Rename stages. The Bypass 
II denotes a normal store-load forwarding. An SB miss 
may get the data from an early SB miss for the same L1 
cache line, or a successful SB access may be delayed until 
intervening store dependence is cleared. Such bypasses, 
not shown in the figure, could be from the Schedule stage 
all the way to the Memory stage. Note that the Bypass I 
may start as late as the Register stage (i.e. with a 4-cycle 
SB) and still achieve a zero-cycle load since dependent 
instructions do not start execution until after the Register 
stage. However, an aggressive schedule of loads to the L1 
cache may be needed if the SB access cannot be resolved 
on or before the Schedule stage.  

The proposed SB can be integrated in the baseline 
microarchitecture as shown in Figure 7. In the 
Decode/Dependence and the Rename stages of the 
baseline design, a load is decoded, the signature is formed, 
and the SB is accessed. Meanwhile, a search through the 
LSQ for memory dependences with early stores is carried 
out. If store-load forwarding is found based on matching 
load signature with an early store without any intervening 
store in between, the SB is bypassed and the stored data 
from the LSQ satisfies the load. Similarly, if the requested 
data is found in the SB and there is no intervening store, 
the load will jump to the Writeback stage to trigger 
dependent instructions. 

A load is moved to the Schedule stage when the load 
misses the SB without store-load forwarding, or an 
uncertainty of memory dependence exists. The load moves 
on with fetching the base register (the Register stage), and 
generating the memory address (the Execute stage). After 
resolving memory dependences, the data may be obtained 
from the LSQ through forwarding. In cases of memory 
dependence free, the load may catch the data found during 
an early SB access, or access the L1 cache normally. A load 

Dec/Dep Rename Schedule Register Execute Writeback CommitI-Fetch Memory

Bypass I

Bypass II
 

Figure 6.  The Pipeline Stages and Bypassing 
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may also wait in the LSQ for an early miss to the same L1 
cache line with the same or different signature. 
 
    At the Writeback stage, the SB is filled with the target L1 
cache line and the directory is updated in response to the 
SB load miss. A backward invalidation to the SB is 
performed upon a synonym hit, or a replacement of a L1 
cache line. Finally, at the Commit stage, stores will lookup 
both the SB and the L1 cache. The SB and the L1 cache are 
updated accordingly. 

 
4.  Performance Evaluation 
 

Performance evaluations of the proposed SB are carried 

out on a modified out-of-order SimpleScalar model [4] as 
described in Section 3.4. This Alpha 21264-like processor 
is capable of issuing 8 instructions per cycle. Table 1 
summarizes simulation parameters. Note that we assume 
the SB or a small L0 has 4 ports with a single-port L1. For 
the baseline model, a 4-port L1 is simulated. Nine integer 
programs, Bzip, Gap, Gcc, Gzip, Mcf, Parser, Twolf, Vpr, 
and Vortex from SPEC2000 are chosen. A version 2.7.2.3 
ssbig-na-sstrix-gcc compiler with option: (funroll-loops -
O2) generates the binary codes. With the optimization 
level “ -O2” , register allocations based on graph coloring 
techniques are applied. For each workload, we skip certain 
instructions based on studies done in [20], and then collect 
statistics from the next 200 million instructions. 

tag
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Signature Formation
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Register / Memory
Scheduler

Addr. Generation
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Data Forwarding
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Figure 7.  Pipeline Microarchitecture with an Integrated SB 
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The out-of-order SimpleScalar pipeline is a functional-
driven timing simulation model [4]. For studying the SB, 
we add value checking in the timing model. The actual 
value is loaded into the SB from the simulated memory. 
The value of loads and stores from functional simulations 
is attached throughout pipeline stages. For loads, the 
functional value is used to verify the value obtained from 
the SB. For stores, the functional value is used to update 
the SB after the store is committed. 

Several design parameters are considered for the SB. 
First, we simulate 16-bit and 24-bit colors. Both results are 
very similar. Secondly, preliminary studies show that the 
option of fetching the second L1 cache line to fill the entire 
SB line, and/or to place the extra-unaligned L1 data in to 
the 2nd SB line, slightly improves the SB hit ratios. For 
design simplicity, we only consider to fill a partial SB line 
and drop the extra L1 data. Thirdly, the L1 topology is 
fixed at 64KB, 4-way set-associative, with variable delays 
from 5 to 10 cycles. We simulate small SBs with 4 to 16 
lines. The SB access takes 2 cycles as described in Section 
3.4. We also verify that a 3- or 4-cycle SB has virtually the 
same performance improvement. Lastly, for comparisons, 
we simulate a L0 cache with equivalent size and access 
time to that of the SB. The SB, L0, L1 and L2 all have 64-
byte line size. 

 
4.1.  IPC Improvement 
 

In Figure 8, the IPCs of the nine programs and their 
arithmetic means are plotted. Three mechanisms are 
compared: the original baseline model (Baseline), the 
pipeline model with an integrated SB but without any 
speculation on memory dependences (SB-nospec), and the 
pipeline model with an integrated SB and a perfect 
memory dependence predictor (SB-perfect). A perfect 
predictor allows loads to bypass any stores in the LSQ as 
long as there is no dependence between them. In this set of 
simulations, an 8-entry SB with 2-cycle access is reported 
and the L1 cache latency is 5 cycles. 
 

On the average, the SB-nospec and the SB-perfect 
improve about 13.0% and 14.2% of IPCs over the 
Baseline. Among the nine programs, Gap and Gzip have 
the most improvement about 30% and 20% for the SB 
schemes, while Mcf, Parser and Vortex show poor 
improvement about 4-7% over the Baseline. The impact of 
a perfect predictor is very limited because the intervening 
stores can be resolved quickly. Mcf has low IPCs due to its 
heavy L2 misses for pointer-chasing references [8]. 

To understand the impact on IPCs, we show the 
distribution of loads based on when and where the load 
data is ready in Figure 9. There are six categories of loads 
that match the classes in Section 3.3:  (1) the data 
forwarded from a prior store in the LSQ bypassing the SB; 
(2) the data obtained from the SB without intervening 
stores; (3) the data forwarded from an early SB miss to the 
same signature line or obtained from the SB after memory 
dependence resolutions of intervening stores; (4) the data 
forwarded from a prior SB miss to the same L1 line with 
different colors; (5) the data from a normal store-load 
forwarding; and (6) the data from a normal L1 cache 
access. The first four categories are the beneficiaries of the 
SB. Among the four, the first two can obtain the load data 
in the Rename stage to achieve a zero-cycle load. The 
category (3) loads may get the forwarded data before their 
addresses are computed, while category (4) loads can only 
receive the forwarded data after the load address becomes 
available. 

We can make several observations from the figure. 
First, using the SB, the normal store-load forwarding and 
the L1 access are reduced to about 30%. In other words, 
70% of the loads benefit from the proposed scheme to 
obtain data sooner than accessing it from the L1 data 
cache. The perfect predictor improves the category (2) 
loads, i.e. the data from the SB in the Rename stage, from 
7% to 23% due to bypassing the intervening stores. Gzip is 

TABLE 1 
SIMULATION PARAMETERS 

 
Fetch/Decode/Issue Width 

Branch Predictor 
 

RUU/LSQ Size 
SB/L0 Size 

L1 Instruction/Data 
L2 Cache 

Latency: SB/L0/L1/L2/Mem 
Memory Port  

Integer ALU: Add/Multiply 

 
8 
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Figure 8.   Comparison of IPCs:  Baseline without SB; 
SB without Memory Dependence Speculation; and SB 
with A Perfect Memory Dependence Predictor 
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most beneficial using a perfect predictor with close to 50% 
of category (2) loads. Detailed analysis indicates that 
about 52% of the loads in Gzip are accessing global 
variables with rarely any true synonym cases. Gap has 
40% category (2) loads with 35% global accesses.   

Second, from the SB-nospec, 40% of the loads obtain 
data either from an early SB miss to the same SB line (and 
the same High/Low portion), or from the SB after 
resolving intervening memory dependences. Memory 
references exhibit strong spatial locality such that misses 
to the same SB line are often close to each other. For 
example, in Figure 1 and 2, many adjacent loads’ 
signatures differ only by a small quantity of the 
displacement value. As a result, the later loads can receive 
data directly from an early L1 access. A typical case is 
found in function _word_fwd_aligned() in wordcopy.c of 
Gcc, where this type of consecutive loads represents 54% 
of the total executed loads. Under the SB-perfect, however, 
these category (3) loads are reduced to 25% because of the 
reduction of delayed SB accesses. Again, Gzip and Gap 
have high percentage of global accesses with rarely any 
signature synonym.  

Third, an average 20% of the loads belong to category 
(4) that indicates many short bursts of SB misses to the 
same L1 cache line with different colors. This situation is 
encountered because of signature synonyms among nearby 
loads. For example, in accessing array elements, the base 
register is incremented by a small stride for each access. 
Although the color changes, several array accesses may 

still address the same L1 line and they all potentially miss 
the SB. This access type represents pre-dominated loads 
we found in function ProdInt() in integer.c of Gap. A 
similar case may also be encountered due to spilled codes 
with limited registers. Base registers are saved and 
restored to the original base address before the next usage. 
As a new color is assigned on each register update, nearby 
loads may miss the SB, but address the same L1 line. 

Fourth, in general, the IPC improvements of Figure 8 
are consistent with the categories of loads in Figure 9. For 
example, Gap, Gcc, Gzip, and Twolf have more loads that 
benefit from the SB, while Mcf, Parser, and Vortex have 
smaller amount of beneficial loads. Note that the overall 
IPC impact is beyond just the pure reduction of load 
latencies. Improving load latency may not help the IPC if 
the load is not located in the critical execution path [22]. 
 
4.2.  SB Hit Ratio 
 

We collect the SB hits/misses during cycle-based 
simulations with 8-entry, 2-cycle SBs and 5-cycle L1 
access latency. The SB hit/miss is determined at the 
Decode/Dependence cycle regardless an existence of any 
memory dependence. A load is considered as an SB hit if it 
hits the SB, or it misses the SB, but an early miss to the 
same SB line (and the same High/Low partition) is already 
in the LSQ.  In Figure 10, we break down SB hits and 
misses with respect to the base register IDs. We separate 
base registers into 5 groups: $v, $a, $s+$t, $gp, and 
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$sp+$s8. The overall SB hit ratio is about 51%. Mcf is 
dominated by pointer-chasing references using $a as the 
base. A portion of these references access records in linked 
structures or pass pointers among multiple functions. The 
SB scheme handles these type references reasonably well 
with about 63% hit ratio for $a. 

The distribution and accuracy of individual groups are 
shown in Table 2. As expected, it is quite accurate to 
access global variables and local stack frames. For other 
loads, the compiler first picks $v and $a as temporary 
registers to hold base addresses for memory accesses. The 
base address is often updated right before the load that 
may results in a miss from the SB. 

 

 
The average SB hit ratio of 51% matches well against 

the load distributions among 6 categories in Figure 9. It 
has shown that about 50% of the loads benefit from the SB 
hit (category (1) through (3)). 

 
4.3.  Sensitivity Studies and L0 Comparison 
 

The impact of the L1 cache latency is shown in Figure 
11. The IPCs for the three caching mechanisms are plotted 
with respect to the L1 cache latency of 5 to 10 cycles. 

From the Baseline, each cycle reduction on L1 cache 
access latency improves the IPC by 3.5% (slightly lower 
than the original SimpleScalar pipeline). The performance 
benefit of the SB goes up with the L1 cache latency as we 
expected. The IPC improvements for the SB-nospec are 
ranging between 13-17% for 5 to 10 L1 cache latency 
cycles. For the SB-perfect, the improvements are about 14-
18% over the simulated baseline model.  

To prove the key advantage of early SB accesses, we 
also simulated a L0 cache with equivalent size (8 lines) and 
access time to that of the SB. As shown in Figure 11, the 
SB out-performs the L0 by 7-11% without a perfect 
memory dependence predictor. L0 can only be accessed 
after the address is computed. Therefore, with a 2-cycle 
access L0, a 3-cycle latency is imposed to the dependent 
instruction. Furthermore, unlike the SB, L0 miss causes 
extra delay to access the L1 cache. 

We simulate small SB and L0 sizes with 4, 8, 12, and 16 

TABLE 2 
DISTRIBUTION AND SB HIT RATIOS ACCORDING TO BASE 

REGISTER GROUPS 

 

Base Regester $v $a $s+$t $gp $sp+$s8

Distribuation (%) 23.9 31.5 10.0 20.3 14.3 

SB Hit Ratio (%) 13.9 51.5 46.7 79.5 71.9 
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lines. We also simulate fast and slow SB, L0 and L1 caches. 
For fast caches, we assume 2-cycle SB/L0 and a 5-cycle 
L1, while for slow caches, we assume 3-cycle SB/L0 and a 
8-cycle L1. The results in Figure 12 suggest that the SB 
size plays a very minor role in improving the IPC. 
Basically, the working set between base register updates is 
small with strong spatial locality. Although larger SB can 
keep the data longer, frequent updates of base registers 
wipe out the correlated data. L0 caches, on the other hand, 
show more IPC improvement with bigger size due to 
higher L0 hit ratios. However, the SB still shows superior 
performance with 1KB size. L0 demonstrates negative IPC 
improvement with 4 cache lines due to the high miss ratio 
and additional L1 access delays. 

As expected, the SB is more beneficial with slower 
access speeds since both 2- and 3-cycle SB achieve zero-
cycle loads. For L0 caches, it also shows more advantage 
with slow speeds because of the longer L1 latency. 

     
5.  Related Work 
 

There have been several attempts to minimize the cache 
latency penalty by providing a zero-cycle load, i.e. the load 
and its dependent instructions can be fetched and issued 
simultaneously. An aggressive approach is to predict and 
speculate the load value [14,15,24,21,23,11,5], or the load 
address [9,10,7,2] in early stages of the processor pipeline to 
issue load dependents without any delay. Both load value and 
load address predictions generally suffer low accuracy. For 
address predictions, a lengthy cache access is still required 
which may delay load dependents even if the predicted load 
address is correct. 

Memory renaming techniques establish dynamic 
dependence correlations between stores and loads [23]. A 

separate storage element called a value file is used to save the 
correlated data. When a memory load instruction is fetched, an 
indirect access to the value file based on the PC of the load 
can retrieve the data without going through the lengthy cache 
access. A similar idea has been use to exploit store-load [17] 
and load-load [18] correlations. The PC of the load can 
indirectly access a small synonym file, which keeps the 
correlated data. Another method of capturing store/load 
correlations has been proposed recently [16].  Instead of 
building dynamic dependence correlations, a symbolic cache 
is used to capture syntax correlations based on the encoding 
bits from stores and loads. 

All above methods are speculative in nature. The 
speculative load value must be verified against the value 
obtained from a normal cache access with penalties for mis-
predictions. Recently, another technique for early load address 
resolution was proposed [3]. Certain types of memory loads, 
such as stack accesses, global constants, or stride-based 
memory accesses, have regular increment/decrement address 
patterns. By tracking base registers for this type of loads, 
register updates can be performed at the decode stage. As a 
result, address generations and cache accesses for dependent 
loads can start earlier. Although non-speculative, this approach 
still needs lengthy cache accesses. 

A small level-0 data cache (L0) [25], a different form of 
small buffer [12], or a L0 only for critical loads [19] helps to 
reduce the load latency. However, since access to the L0 
requires going through normal pipeline stages to decode and 
generate addresses, it usually cannot achieve 0-cycle loads.  

The proposed signature buffer has several advantages over 
existing cache latency hiding methods. First, different from the 
symbolic cache, the SB is non-speculative. The data obtained 
from the SB without intervening stores is always correct. 
Second, all loads can access the data from the SB without any 
restriction on the type of the loads or certain special base 
registers. Third, unlike the address prediction or the register 
tracking scheme, loads through the SB can bypass the address 
generation and cache access completely. Fourth, unlike the 
memory renaming technique, where the store/load correlation 
is established dynamically by the hardware, the store/load 
correlation is established from the instruction encoding bits to 
simplify hardware requirement. Finally, the SB uses line-based 
granularity to capture the spatial locality among memory 
references. 

 
6.  Conclusion 
 

A non-conventional signature buffer, which is 
addressed by the signature of store/load instructions, is 
introduced. A memory signature using the color of the base 
register and the displacement can be quickly formed to 
enable data accesses through the SB in early processor 
pipeline stages. A color of a base register is used to 
differentiate contents of the same base register. A new 
color is assigned whenever the respective register is 
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updated. Therefore, when two memory requests have the 
same memory signature, they address to the same memory 
location. The load penalty through regular caches can thus 
be eliminated when the requested data is obtained from the 
SB. Performance evaluation of SPEC integer programs has 
demonstrated that the proposed method can successfully 
improve the latency for about 70% of the loads. On an 
Alpha 21264-like processor model, these early loads using 
the SB can translate to about 13-18% of IPC improvement. 
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