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Abstract
Concurrent B+trees have been widely used in many systems.

With the scale of data requests increasing exponentially, the

systems are facing tremendous performance pressure. GPU

has shown its potential to accelerate concurrent B+trees per-

formance. When many concurrent requests are processed,

the conflicts should be detected and resolved. Prior meth-

ods guarantee the correctness of concurrent GPU B+trees

through lock-based or software transactional memory (STM)-

based approaches. However, these methods complicate the

request processing logic, increase the number of memory

accesses and bring execution path divergence. They lead

to performance degradation and variance in response time

increasing. Moreover, previous methods do not guarantee

linearizability among concurrent requests.

In this paper, we design a combined-based concurrency

control framework, called Eirene, for GPU B+tree to reduce

the overhead of conflict detection and resolution. First, a

combining-based synchronization method is designed to

combine and issue requests. It combines the requests with

the same key, constructs their dependence, decides the is-

sued request, and determines their return values. Since only

one request for each key is issued, key conflicts are elimi-

nated. Then, an optimistic STM method is used to reduce

structure conflicts. The query and the update requests are
partitioned into different kernels. For the update kernels,

STM is involved only when the number of the retry reaches

a threshold. Finally, a locality-aware warp reorganization

optimization is proposed to improve memory behavior and
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reduce conflicts by exploiting the locality among requests.

Evaluations on an NVIDIA A100 GPU show that Eirene is

efficient (a throughput of 2.4 billion per second) and can

guarantee linearizability. Compared to the state-of-the-art

GPU B+tree, it can achieve a speedup of 7.43X and reduce

the response time variance from 36% to 5%.

CCS Concepts: • Theory of computation→ Data struc-
tures design and analysis; • Software and its engineer-
ing→ Concurrency control.

Keywords: GPU B+tree, Concurrency

1 Introduction
As one of the most popular index structures, concurrent

B+trees have been widely adopted in different fields, such

as file systems [36], relational databases [20, 27, 33], and

key-value store systems [22, 24]. Nowadays, the volume of

concurrent requests increases exponentially in domains like

big data. For example, more than 80 million requests per

second were processed by Amazon’s database on Prime Day

2020 [6]. The underlying B+trees are facing significant pres-

sure for serving such a tremendous amount of concurrent

requests.

GPUs have become one of the most popular accelerators

due to their high computing power and large memory band-

width [18, 25, 42]. They have already been adopted in data-

center environments to boost the performance of core al-

gorithms of many applications [3, 15]. GPUs also show the

potential to improve the performance of concurrent B+trees.

To fully utilize parallel computing resources on GPUs, con-

current requests are first buffered in host memory and then

transferred to GPUs to be processed [43, 44]. To support

concurrent request processing on GPUs, some concurrency

control approaches like locks or software transactional mem-

ory (STM) are used to detect and resolve conflicts
1
among

requests. However, by analyzing the existing designs for

concurrent GPU B+trees [4, 19], we realize that the detec-

tion and resolution of concurrent conflicts complicate the

1
The conflicts can be classified as key conflicts (caused by the requests on

the same key) and structure conflicts (caused by tree rebalancing operations

triggered by updates).

https://doi.org/10.1145/3572848.3577474
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processing logic and hence increase the memory accesses

and branch control instructions. It dramatically impacts GPU

B+tree performance and quality of service (QoS) and causes a

significant variance in response time. And none of these con-

current GPU B+trees guarantees linearizability [13, 16, 17],

which is essential for the fairness of concurrent requests.

Enlightened by the above analysis, we design and imple-

ment a combining-based concurrency control framework

called Eirene, the Greek goddess of peace, for GPU B+tree to

minimize the overhead of conflict detection and resolution.

First, a combining-based synchronization approach is de-

signed to eliminate key conflicts among requests. It combines

the requests with the same key and constructs the depen-

dence among them by their logical timestamps. Timestamp

refers to the arrival order of requests, which in the lineariz-

ability semantics determines the outcome of the requests. For

the requests with the same key, only one request is issued,

and the return values of the other requests are determined by

their dependency relationship. To reduce structure conflicts,

an optimistic STM method is used. The requests are parti-

tioned into different kernels (query kernel and update kernel)
according to their types. For the query kernel, the requests

are processed without STM protection. For the update kernel,
STM is involved only when retries reach a threshold. Finally,

a locality-aware warp reorganization optimization is pro-

posed to improve memory performance and reduce conflicts

by exploiting the locality among the combined requests.

These designs of Eirene can achieve better performance

andQoS, and keep linearizability by eliminating key conflicts,

reducing the possibility of structure conflicts, and exploiting

locality. We use the YCSB benchmark [11] to evaluate key-

value store performance. Evaluation results show Eirene has

a substantial improvement in both performance and response

time relative to existing concurrent GPU B+trees (STM GB-

tree [19] and Lock GB-tree [4]). It achieves a throughput of

2.4 billion per second for a 95%query/5%update concurrent
input. Compared to the state-of-the-art Lock GB-tree [4],

it achieves about a 7.43X performance speedup, and the

variance of response time is improved from 36% to 5%.

In summary, the contributions of this work include the

following:

• We make a comprehensive analysis of previous works

of concurrent GPU B+tree and find several perfor-

mance bottlenecks.

• We propose a combining-based concurrency control

framework called Eirene, which is the first combining-

based synchronization approach for concurrent GPU

B+trees. Eirene can reduce conflicts and overhead of

conflict detection and resolution to achieve better per-

formance and QoS with linearizability.

• Results show Eirene can achieve a throughput of 2.4 bil-

lion per second with only a 5% response time variance.

The remainder of this paper is organized as follows. Sec-

tion 2 introduces the background and discusses our moti-

vation. Section 3 surveys the related works. Section 4 in-

troduces the combining-based concurrent control approach.

Section 5 gives out the locality-aware warp reorganization

optimization. Section 7 introduces the implementation of

Eirene. Section 8 shows the experimental results and Sec-

tion 9 concludes this work.

2 Background and Motivation
This section first introduces concurrent GPU B+trees. Then,

we discuss the problems of existing concurrent GPU B+trees.

2.1 Concurrent GPU B+trees
B+tree is a popular index structure for large-scale data stor-

age and has been widely used in different fields, such as

databases [20, 27, 33] and file systems [36]. It is one of the

B-tree varieties where inner nodes only store keys and child

references. The leaf node contains keys and values. In the

real-world, concurrent requests (query requests mixed with

update requests, which include update, insertion, and dele-

tion) for B+trees are processed simultaneously. With the

requests increasing exponentially, GPUs show the potential

to improve the performance of concurrent B+trees [4, 41].

A GPU contains several streaming multiprocessors (SMs).

Multiple contiguous threads (e.g., 32 threads) are organized

into a warp and execute the same instructions in a lockstep

fashion. The thread blocks composed of multiple warps con-

stitute the GPU kernel, a parallel function that executes on all

SMs. To fully utilize parallel computing resources on GPUs,

concurrent key-value requests are first buffered in host mem-

ory and then transferred to GPUs to be processed [43, 44]

in GPU kernels. When concurrent requests are processed

in parallel, the conflicts among them should be detected

and resolved to guarantee correctness. Conflicts could be

detected and resolved using software transactional memory

(STM)-based [8, 19, 40] or lock-based approaches [4, 43, 44].

2.2 Motivation
For concurrent GPU B+trees, no matter lock-based or STM-

based approaches, conflict detection, and resolution decrease

the efficiency of request processing. Conflict detection and

resolution are conducted during tree traversal and node op-

erations. To detect and resolve conflicts, a large number of

conditional statements and branches are introduced, which

is not friendly to GPU SIMT architecture and significantly

increases the number of memory access. Moreover, the re-

quests have to be re-executed or stalled when conflicts hap-

pen, which increases the processing delay. As a result, con-

flict detection and resolution bring a severe impact on request

processing throughput and response time [23, 37, 45].

To illustrate the impact, we collect the memory accesses

(𝑚𝑒𝑚𝑜𝑟𝑦_𝑖𝑛𝑠𝑡 ) and the control-flow instructions (𝑐𝑜𝑛𝑡𝑟𝑜𝑙_𝑖𝑛𝑠𝑡 )
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of STM-based GPU B+tree [19] (STM GB-tree for short) and

lock-based GPU B-tree [4] (Lock GB-tree for short) using

Nsight Compute [31]. The profiling environment is the same

as that described in Section 8.
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Figure 1. Profiling of STM GB-tree and Lock GB-tree. Note

that the y-axis is in the log scale.

As the data in Figure 1 show, there are 209 and 79 mem-

ory accesses per request for STM GB-tree and Lock GB-tree

respectively. And there are 8562 and 5445 control-flow in-

structions per request for STM GB-tree and Lock GB-tree

respectively. Compared to a GPU B+tree without concurrent

control (the first bar in each group of Figure 1, which can

be considered as the ideal condition.), the memory accesses

of STM GB-tree and Lock GB-tree are 2.98X and 1.12X, re-

spectively, and the control-flow instructions are 4.49X and

2.85X, respectively. Moreover, the memory accesses of STM

GB-tree and Lock GB-tree account for 18% and 10% of the

total instructions, respectively. The control-flow instructions

of STM GB-tree and Lock GB-tree account for 30% and 25%

of their total instructions, respectively.

To illustrate the situation in response time, we also collect

maximal response time, minimal response time, and average

response time of STMGB-tree and Lock GB-tree. To compare

the performance, all average results are normalized to the

average response time of the STMGB-tree. Themaximal time

and the minimal time of different methods are normalized to

their average response time respectively for computing the

variance. As the left two bars of the data in Figure 2 show,

the variance of the response time of the methods mentioned

above is large (40% for STM GB-tree and 36% for Lock GB-

tree).

Linearizability [17] is critical for the correctness and fair-

ness of concurrent processing. Concurrent processing is lin-

earizable if the results are the same as that obtained from

the sequential execution in their precedence order (usually

in their real-time order). Linearizability can provide a vital

correctness condition and fairness for concurrent requests,

which is required in most concurrent systems [13]. In the

design of STM GB-tree or Lock GB-tree, efforts mainly fo-

cus on exploiting the parallelism in GPUs. Neither of them

guarantees linearizability.
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Figure 2. Normalized time per request.

3 Related Works
To handle concurrent requests more efficiently, many works

aim to improve the index structure performance with soft-

ware or hardware acceleration. This section discusses re-

lated works on index structure acceleration, concurrent GPU

B+trees, and the combining synchronization technique.

Index Structure Acceleration. With the volume of con-

current requests increasing exponentially, efforts are made

to accelerate concurrent index structure with parallel hard-

ware, such as FPGAs for hash table [7, 26, 39], GPUs for hash

table [43, 44] and skip list [29, 30], Hardware Transactional

Memory (HTM) for B+tree [38], and GPU HTM [9, 10]. And

also, some works are presented on improving query perfor-

mance of index structure on GPUs [35, 41]. Compared to

previous works, Eirene focuses on accelerating B+tree with

GPU and addresses not only the query performance but also

concurrent (mixed query and update) performance.

Concurrent GPU B+trees. Holey et al. [19] present a

lightweight STM design with a simple STM interface that

can scale well for many GPU threads. Awad et al. [4] present

a concurrent GPU B-tree design. It uses fine-grained locks

for concurrency control and is optimized for GPU SIMT to

achieve coalesced memory accesses and avoid branch diver-

gence. However, the two works cannot achieve satisfying

performance and QoS and don’t support linearizability se-

mantics. Yan et al. [41] improve the query throughput of

B+tree on GPUs using several optimizations. However, it

doesn’t support concurrent processing. In our work, we use

the STM interfaces provided by [19] to guarantee the cor-

rectness during tree traversal for update requests, which

provides lightweight STM primitives with little overhead.

Based on it, we propose an optimistic strategy for STM on

B+tree to minimize the possible fallback overhead caused by

false transaction conflicts.

Combining Synchronization Technique. Combining
synchronization is a technique used to reduce the synchro-

nization conflicts for many-core environments. One or more

threads become combiners and combine requests with the

same key from other threads into fat requests, and the com-

bined requests are processed by the combiners. It is experi-

mentally shown that the combining-based implementation
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outperforms the fine-grained locking implementation. Some

works [5, 14, 28, 34] use the combining synchronization tech-

nique to improve the concurrency performance of various

data structures such as heap, queue, and red-black tree. Ak-

senov et al. [2] propose a parallel-combining method that

applies flat-combining to batch processing and demonstrates

the performance benefits of explicit synchronization in con-

currency scenarios. However, these works are designed for

concurrent processing on CPUs but not GPUs. Compared to

these works, Eirene is the first system to apply the combining
synchronization technique to concurrent GPU B+trees.

4 Combining-based Concurrent Control
In this section, we introduce the designs of the combining-

based concurrent control approach, which reduces the im-

pact of conflicts and achieves linearizability.

4.1 Combining-based Synchronization
Combining synchronization is a low-overhead concurrent

synchronization technique whereby the combiner threads

combine concurrent requests with the same key and process

them one by one to reduce the conflict overhead [2, 14, 16].

However, prior combining designs mainly focused on multi-

core CPUs which cannot be applied to GPUs.

4.1.1 Combining-based synchronization.
When combining synchronization is applied to reduce the

conflict overhead, a combiner needs to be able to detect the

requests with the same key (find the key conflicts). Naively, it

can be achieved by comparing the keys between any two re-

quests. Since the incoming keys of different requests are ran-

domly distributed, such detection is time-consuming. How-

ever, if the requests are sorted by their keys, the detection

overhead will be much smaller because each request only

needs to be compared with its adjacent requests. In Eirene,

the requests are first sorted by their target keys, and the

requests with the same keys are sorted by their logical times-

tamps. Note since these requests are buffered in time order

when they reach the GPU, here we take the order in the

buffer as their logical timestamps.

To combine the requests with the same key, the sorted

requests are first scanned. If there exist multiple requests

with the same key, and all of them are query requests or up-
date requests, these requests are combined. Only the request

with the largest timestamp will be issued to traverse the

B+tree. If all requests for a specific key are query, the unis-
sued query requests could share the result with the issued

query request. If all requests for a specific key are update, the
unissued update requests are ignored because their values

will be overwritten by the last update request.
If there are mixed kinds of requests for the same key,

i.e., query and update, the update request with the largest

timestamp is issued, and the old (original) value in the leaf

node is retrieved by the issued request. For a query request

in the mixed requests, if there is a delete request before it
without any other update request between them, its result

should be null. If there is an update request before it without
any delete request between them, it uses the value of this up-
date request as its result. Otherwise, it uses the old (original)
value retrieved by the issued request as its result. Thereby,

all the unissued requests can calculate their results without

traversing the B+tree.

R1R5 R5R4 W4,a W4,b R4

T2 T3 T5 T6timestamp

U(5,e)U(5,f) Q1Q4 U(4,a) Q4 U(4,b)

T1 T4 T7

Q1

T8

(a) Original requests

Q1 U(5,f)U(4,b)Q1 Q4 U(4,a) Q4

T8 T2 T3 T5timestamp T6T4 T1

U(5,e)

T7

(b) Requests after sorting

1_val

Q1 U(5,f)U(4,b)Q1 Q4 U(4,a) Q4

T8 T2 T3 T5timestamp T4 T6 T1

U(5,e)

T7
a

4_old_val

(c) Request combining

Figure 3. An example of how the combining approach

works.

Here, an example is given to illustrate how the combining-

based synchronization approachworks. As shown in Figure 3,

𝑄𝑘 denotes a query request with target key𝑘 .𝑈 (𝑘, 𝑣) denotes
an update request to update the key 𝑘 with value 𝑣 .𝑇𝑡 repre-

sents a timestamp where smaller 𝑡 corresponds to a smaller

timestamp, which happens earlier. The requests in Figure 3(a)

are original requests with timestamps. As Figure 3(b) shows,

the sorted requests with the same key are adjacent in the

timestamp order. In this example, the requests of target key 1

are all query, so𝑄1 with𝑇 8 is issued, and𝑄1 with𝑇 4 shares

the result with 𝑄1 with 𝑇8 (1_𝑣𝑎𝑙). The requests of target

key 5 are all update. Thus, only its last request (𝑈 (5, 𝑒)) is
issued. The requests with target key 4 are of mixed kinds.

After combining, the last update operation (𝑈 (4, 𝑏)) is issued,
and the old (original) value (4_𝑜𝑙𝑑_𝑣𝑎𝑙 ) instead of value a or

b is returned. There is no update whose timestamp is smaller

than that of𝑄4 with𝑇 2, so its result is 4_𝑜𝑙𝑑_𝑣𝑎𝑙 .𝑄4 with𝑇 5

obtains the value (𝑎) of update 𝑈 (4, 𝑎), which is the nearest

update operation before it, as its result.

After sorting and combining, the key conflicts among

requests are eliminated because only one request for each

key is issued. Meanwhile, all the other unissued requests

with the same key can get their results according to their

timestamps, which achieves linearizability [17].

4.1.2 Range Query.
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Range query is a basic operation for concurrent B+tree

that queries data within a range. Since a range query gets

a range of keys instead of one key, a range query cannot

be processed by the combining synchronization approach

directly. Moreover, if range queries are still processed in their

original way, they may get the wrong results because some

update requests in their range may be combined with other

requests.

R(3,5) U(4,e)......

T2 T10

U(4,b)

T1

(a) Original requests

T10

results
old_val

4

a

3        4        5

cee

R(3,5) U(4,e)
T2

should be ‘b’

issued requests

(b) Range error

Figure 4.An example of why the original range query would

be wrong with the combining approach.

Figure 4 shows an example. 𝑅(𝑙, 𝑢) represents a range
query with lower bound 𝑙 and upper bound 𝑢. Figure 4(a)

shows the original request sequence. All the requests for key

4 are shown in the figure. As Figure 4(b) shows, 𝑅(3, 5) with
a timestamp 𝑇2 should get the value 𝑏 for key 4. However,

after the requests for key 4 are combined, only 𝑈 (4, 𝑒) is
issued. Therefore, 𝑅(3, 5) can only get the old value of key 4

or get value 𝑒 written by𝑈 (4, 𝑒), which is the wrong value.

We introduce a mechanism to guarantee range queries
can work correctly with our combining-based synchroniza-

tion approach. When the buffered requests are processed, all

range queries are also sorted with the other requests based on
their lower bound values. After that, the sorted requests are

scanned. If a key is in the range of a range query and there

are some update requests for this key, an artificial query for

this key with the range query’s timestamp is generated and

inserted into the request sequence of that key based on its

timestamp. A range query first gets its result in the original

manner. For each key with an artificial query, its value is
updated with the result of the corresponding artificial query.
Figure 5 gives an example of range queries. Figure 5(a)

shows the original requests. 𝑅(3, 6) is a range query, and it

queries the keys from key 3 to key 6. Figure 5(b) shows how

𝑅(3, 6) is processed. The requests are first sorted according

to their keys and timestamps. Key 4 and key 6 are in the

range of 𝑅(3, 6). Moreover, there are update requests for

them. Therefore, two artificial queries (𝑄𝑟4 and 𝑄𝑟6) for

𝑅(3, 6) are generated with the timestamp 𝑇2 and inserted

into the corresponding positions. After these requests are

R(3,6)

T2

Q4

T4

U(4,e)

T5

U(4,b)

T1

Q3

T3

U(6,a)

T6

(a) Requests before sorting and combining

Q4R(3,6) U(4,e)

T2 T4 T5

U(4,b)

T1

Q3

T3

U(6,a)

T6

Qr4

T2

Qr6

T2

results
b

4

b

43     4      5       6

3_val e 5_val a

3

3_val 6_val

6

b 6_val

update

al e 5 a

b 6_val

(b) Range query processing

Figure 5. An example for range query processing.

processed, 𝑄𝑟4 and 𝑄𝑟6 get their results (𝑏 and 6_𝑣𝑎𝑙 ). After

that, the range query result of key 4 is updated with that of

𝑄𝑟4 (𝑏), and the range query result of key 6 is updated with

that of 𝑄𝑟6 (6_𝑣𝑎𝑙).

4.2 Combining-based Concurrent Control
Among concurrent requests, there are key conflicts and struc-

ture conflicts. In our concurrency control design, we first use

our combining-based synchronization approach to eliminate

key conflicts. Then, we use an STM-based method to process

structure conflicts to guarantee correctness. The whole work-

flow of the combining-based concurrent control approach is

shown in Algorithm 1.

When concurrent requests are transferred to GPUs, they

are first processed by the combining-based synchronization

approach (line 2) to eliminate key conflicts. After the re-

quests with the same key are combined, there are only struc-

ture conflicts among issued requests. Then, we partition

requests to be issued onto different GPU kernels according

to their types (line 3): query kernel (for query requests and

𝑟𝑎𝑛𝑔𝑒 𝑞𝑢𝑒𝑟𝑦 requests) and update kernel (for update requests
including update, insertion, and deletion) (lines 3-5) [4, 43].

We perform such a kernel partition based on the following

observations: for query requests, they only need to get the

value without any tree structure modification. Even if they

are not protected, they can be correctly executed. And not ap-

plying for synchronization protection on query requests can

reduce the possibility of structure conflicts. The query kernel

is launched first. After that, the update kernel is launched.
These two kernels are executed separately. Because there

are no key conflicts among issued requests, the execution

order of the issued requests will not affect the returned re-

sults. There is no synchronization protection on query ker-

nel, and some optimizations for query requests in previous

work [41] can be applied to improve further performance

for tree traversal (line19). For update kernel (lines 23-46),
we use eager STM [19] to protect update requests, and the

multiple-tree-regions splitting approach [12, 38] is used to
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Algorithm 1 Combining-based Concurrent Control

Declaration:
Reqs, QueryReqs, UpdateReqs: pointers to the arrays of incom-
ing requests, query requests and update requests.
CombReqs: pointer to the array of requests after combining.

1: procedure Combining-based Concurrent Control

2: CombReqs = COMBINING(Reqs)

3: QueryReqs, UpdateReqs = PARTITION(CombReqs)

4: QUERY_KERNEL(QueryReqs)

5: UPDATE_KERNEL(UpdateReqs)

6: RESULT_CAL(Reqs,QueryReqs,UpdateReqs)

7: end procedure
8:

9: procedure COMBINING(Reqs)

10: Sort(Reqs)

11: CombReqs = Combine(Reqs)

12: return CombReqs

13: end procedure
14:

15: procedure QUERY_KERNEL(QueryReqs)
16: id = blockIdx.x * blockDim.x + threadIdx.x

17: key = QueryReqs[id].key

18: val = &QueryReqs[id].val

19: leaf = findLeaf (root, key)

20: val = findValInLeaf(leaf, key)

21: end procedure
22:

23: procedure UPDATE_KERNEL(UpdateReqs)
24: id = blockIdx.x * blockDim.x + threadIdx.x

25: key = UpdateReqs[id].key

26: val = UpdateReqs[id].val

27: RETRY: ⊲ inner nodes region
28: if retry_count < THRESHOLD then
29: leaf = findLeaf (root, key)

30: else
31: TX_BEGIN()

32: leaf = findLeaf(root,key)

33: TX_END()

34: end if
35: leafvers = leaf.version

36:

37: TX_BEGIN() ⊲ leaf nodes region
38: if leafvers == leaf.version & key in range(leaf) then
39: update(key, val, leaf)

40: else
41: retry_count++

42: TX_END()

43: goto RETRY

44: end if
45: TX_END()

46: end procedure

reduce structure conflicts. The tree traversal is partitioned

into two parts: inner node traversal (line 29) and leaf node

operations (line 39). Only the leaf node operations are always

protected by STMs (lines 37-45), and the inner node traversal

is firstly unprotected (line 29). When a conflict occurs during

the request processing, it will retry. If the number of retries

reaches the threshold, the inner node traversal for the corre-

sponding request is protected by an STM (lines 30-34). After

the inner node traversal, the request gets the reference to the

target leaf node. There may be a consistency problem in that

the target leaf node is split after the request gets its refer-

ence. To solve this problem, we use a validation mechanism

between inner node traversal and leaf node operations [38].

Each leaf node has a version number, which is also stored

by its parent node. Once the leaf node is split, its version

number is increased atomically by one, and it will update

the version number stored in its parent node. When the ref-

erence to a leaf node is obtained, the corresponding version

number is also obtained (line 35). Before the leaf node is

operated, the recorded version number is compared to that

of the leaf node. If two version numbers are not equal, a

conflict has occurred, and the request processing is aborted

and retried (lines 38-44).

After the issued requests finish, they will retrieve the old

values of the node. As discussed in subsection 4.1, the unis-

sued requests calculate their results according to their depen-

dency relationship with the issued requests by invoking the

𝑅𝐸𝑆𝑈𝐿𝑇_𝐶𝐴𝐿 method (line 6). This correction procedure

executes in parallel on GPU.

5 Locality-Aware Warp Reorganization
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Q8Q7Q6Q5Q4Q2Q1 Q3 Q9

Same target node Adjacent target node 

RG1 RG2 RG3

Q45 Q46 Q47

Long distance target node 

Warp 4

…

g

Leaf nodes

1 2 3 4 15

Tree height: 5

Node id

RG4
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4 25

… …

15 58

… …

Node id  RF valuetime
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3
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4

null
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RG 1 Q3Q2Q1

Q6Q5Q4RG 2

Q9Q8Q7RG 3

Q47Q46Q45RG 4

(b) Iteration warps

Figure 6. An example of the locality-aware warp reorgani-

zation approach.
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After the requests are sorted and combined, the adjacent

requests that are issuedwill likely access the same or adjacent

leaf nodes. When these requests are partitioned into request

groups (RGs) and mapped to different warps, these warps

may also access the same or adjacent leaf nodes. Figure 6(a)

shows such an example where 𝑄𝑘 represents a request with

key 𝑘 . Multiple requests with the same color mean their

target keys are in the same leaf node. For example,𝑄3 in RG1

and 𝑄4 in RG2 have the same color (pink), indicating that

their target keys are both in the leaf node 2. The tree height

is 5 in this example. After these requests are partitioned

into different RGs, the adjacent RGs will access the same or

adjacent leaf nodes. For example, RG2 and RG1 will access

the same leaf node 2, RG3 will access the leaf node 4 that

is adjacent to the leaf node 3 accessed by RG2. Therefore, if

an RG can get its target leaf node along with the linked leaf

nodes from the target leaf node of its adjacent RG instead

of traversing from the root, traversal steps (the number of

nodes that need to be traversed) could be reduced compared

to the traversal from the root. However, in reality, after these

RGs are mapped to different warps, it is difficult to reuse such

a locality because the warps are dynamically scheduled in

the same SM, and the scheduling order cannot be predefined.

To utilize the locality among adjacent RGs, an approach

called locality-aware warp reorganization is proposed here.

In this approach, several adjacent RGs are organized into a

warp and executed in a loop manner (called iteration warp).

The RGs in an iteration warp are mapped to a warp, and

executed one by one. There is a shared buffer for each iter-

ation warp to store the target leaf node. When an iteration

warp is executed, its first RG traverses the tree in the original

way (from root to leaf, also called vertical traversal). After an

RG finishes its execution, the last accessed leaf node (maybe

the nearest to the next group) is stored in the buffer. The

following RG will get its target leaf node by traversing the

linked leaf nodes from the buffered node (called horizontal

traversal). For update requests, the horizontal traversal is

protected with locks or STM. If conflicts happen, they will

retry and traverse the tree through vertical traversal. Because

there may be structure conflicts among the original adjacent

RGs, such a design can avoid some structure conflicts after

they are combined into an iteration warp.

If the steps or the traversed node number between the

buffered left node and the target leaf node is smaller than the

tree height, such a design can perform better. However, if

the step is larger than the tree height, it will degrade perfor-

mance. To avoid such a condition, a mechanism is designed

to help Eirene decide which way to traverse, vertically or

horizontally. A range field (RF) is extended in each leaf node,

and it is used to record the minimal key of a node whose

traversal steps from this node are tree height plus one. For

example, suppose the tree height is 5 and the minimal key of

leaf node 6 is 16; the RF value of leaf node 1 will be 16. These

RF values are initialized when the tree is constructed. The

RF value of a leaf node is updated only when this node is the

starting point of a horizontal traversal, and the traversal step

is larger than the tree height. When the leaf node informa-

tion is stored in the iteration warp buffer, its RF value is also

stored in the buffer. For the next iteration, it will first check

whether its key is larger than the buffered RF value. If so,

the next iteration will vertically traverse the tree. Otherwise,

the tree is traversed horizontally. Since the requests in one

iteration are executed in a SIMT manner, the executed steps

of different threads follow the maximal steps. Therefore, the

maximal target key in an iteration instead of the minimal

one is used to compare with the stored RF value.

Another design consideration is the iteration number in a

warp. A large iteration number would increase the locality

among the iterations. However, it would sacrifice the paral-

lelism available among warps. To fully use the computing

resources, the RGs are evenly distributed to different SMs

on a GPU. Then, they are organized into iteration warps

executed on each SM.

Figure 6(b) shows how this approach works. Suppose the

tree height is 5, and the RF values of different leaf nodes are as

shown in the table in Figure 6(b). Instead of being mapped to

different warps, four RGs are organized as an iteration warp.

Before the first iteration is executed, the buffer is empty. The

requests in the first iteration (RG1) traverse the tree from the

root to the leaf nodes. After the requests in RG1 finish, the

buffer is filled with its maximal accessed leaf node (leaf node

2). When RG2 is executed, it gets the leaf node 2 from the

buffer and checks whether its maximal key (6) is smaller than

the buffered RF value (19). Since the maximal key is smaller

than the RF value, it horizontally traverses the tree. After

RG3 is finished, leaf node 4 is stored in the buffer. Before RG4

is executed, it first checks whether its maximal key (47) is

larger than the buffered RF value (25). Since its maximal key

is larger than the buffered RF value, it vertically traverses

the tree.

6 Proof Sketch
This section outlines the arguments about correctness and

linearizability for combining-based concurrent control. The

main proof obligation is to show that the design can work

correctly and the results of concurrent requests processed

by it are the same as those of processing these requests in

their logical timestamp order.

Proof outline. Linearizability [17] is a correctness con-

dition for concurrency. It can be defined as the execution

results of concurrent requests being consistent with that

of the sequential execution in real-time or timestamp or-

der. Thus, whether a design satisfies linearizability depends

on how the requests with the same key are processed. If

the execution results of the requests with the same key are

equivalent to those of sequential execution in timestamp

order, the design is linearizable. In our design, each request
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has a logical timestamp according to its arrival order in the

buffer. The logical timestamp has been determined when the

request reaches the GPU. If the requests with the same key

are all query or range query requests, no matter what order

these requests are executed, they will always get the same re-

sults. Thus, in combining-based concurrent control, requests

can get the same results as that in sequential execution. For

some keys with mixed request types, they are first sorted by

their timestamps, and their dependence relationship is con-

structed in our combining-based synchronization approach.

Then only one request is issued, and the other unissued ones

will get their results based on the dependence relationship.

Therefore, such a design can achieve linearizability because

the requests with the same key get consistent results as they

are sequentially executed in their timestamp order.

After the combining-based synchronization, there exist

only structure conflicts. Hence, it’s safe to partition these

requests into different kernels. For an update request, the
tree traversal is partitioned into inner node traversal and

leaf node operations. The inner nodes are first traversed

without any STM protection. When it fails, it will retry until

the threshold is reached. Then STMs protection is turned on.

Moreover, the leaf node operations are always protected with

STMs. The correctness of such an approach has been proved

in [38]. Thus, the combining-based concurrent control design

can work correctly.

In the locality-aware warp reorganization approach, dif-

ferent traversal manners are chosen to search the target leaf

node through exploiting locality. The locality-aware warp

reorganization does not impact the results of the concur-

rent requests, so it is harmless for the linearizability. Since

horizontal traversals execute on leaf nodes and are always

protected with STMs for update requests, the correctness of
locality-aware warp reorganization can be guaranteed.

7 Implementation of Eirene
We have implemented a GPU concurrent B+tree of Eirene

using CUDA C++ with 2200 lines of code. Here, we describe

the details of the Eirene implementation.

The tree structure is a regular B+tree where the inner

node contains keys and child pointers. A child pointer refers

to the location of a child. The whole tree structure is stored

in GPU global memory. We buffer the concurrent requests

in the CPU end and transfer them to GPU after the number

reaches a configurable threshold (1 million in the current

implementation). In the combining-based synchronization

approach, the radix sorting algorithm in the CUB library [32]

is used to sort the bulk of requests based on their keys and

logical timestamps. After sorting, we combine these requests

by scanning each request with their neighbors in parallel,

where each GPU thread scans one request. Then we imple-

ment two CUDA kernels (query and update) to issue different
type requests where the query kernel is launched before the

update kernel. Since the query kernel only processes query
or range query requests which do not modify B+tree, we

process these requests without any STM protection, and the

narrowed-threads-group optimization in [41] is used to speed

up query performance. The update kernel process executes
tree traversal and update operations with an optimistic STM

approach. We implement the STM with eager conflict detec-

tion [19]. Theoretically, synchronization schemes other than

STM can be used in the implementation, such as fine-grained

locks. To support the locality-aware warp reorganization ap-

proach, we reorganize multiple continuous warps together to

form an iteration warp. In the original warp, each thread only

processes one request. In the iteration warp, each thread will

process requests from the same position of multiple original

warps one by one.

8 Evaluation
In this section, we evaluate the performance of Eirene and

try to answer the following questions:

• Can Eirene achieve better performance than state-of-

the-art systems like Lock GB-tree?

• Can Eirene achieve better QoS?

• Does Eirene solve the challenges in Section 2?

• How does each design choice affect performance?

• How about range query performance for Eirene?

8.1 Experimental Methodology
Our experiments are conducted on a 64-core server (2-sockets

32-core AMD EPYC 7532s) with an Ampere GPU (NVIDIA

A100). We compile all codes using GCC 7.5.0 and CUDA 11

on Ubuntu 18.04 (kernel 5.4.0) with the O3 optimization op-

tion. We implement a prototype of Eirene as described in

Section 7. The STM GB-tree [19] and the Lock GB-tree [4]

are used as the performance baseline. The Lock GB-tree is

open source, and we implement the STM GB-tree according

to the paper [19].

To demonstrate the performance effectiveness of the de-

sign, we evaluate Eirene with Yahoo! Cloud Serving Bench-

mark (YCSB) [11], which is a widely used benchmark for

key-value storage. Each record has a 32-bit key and a 32-bit

value. We use the request data set with different query/up-
date ratios. The default ratio of query/update is 95%/5%. The
default distribution is Uniform. These requests are processed

on different tree sizes, including 2
23
, 2

24
, 2

25
, and 2

26
, and

the default tree size is 2
23
. All results are averaged by 5-time

executions. All the evaluations of Eirene include the sorting

time in the combining-based concurrent control approach.

In this paper, we focus on the B+tree performance on GPU

for concurrent requests. Thus the results do not include the

transfer time between CPU and GPU. Although the trans-

fer time between CPU to GPU is nonnegligible, we do not

consider it in our current design and evaluation to compare

it with the existing works. The individual response time of
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each request is averaged over a batch of arriving requests.

The average response time per request is obtained by aver-

aging the individual response time from fifty tests. We also

use Nsight Compute [31] to collect runtime information for

analysis.

8.2 Overall Evaluation
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Figure 7. Overall performance.

We first compare the performance of Eirene with those of

the STMGB-tree [19] and the Lock GB-tree [4]. As the data in

Figure 7 show, Eirene can achieve a throughput of 2.4 billion

per second on average under the default configuration, which

is about 13.68X speedup to that of the STMGB-tree and about

7.43X speedup to that of the Lock GB-tree. With the tree

size increasing, the performance of Eirene decreases. The

reason is that the traversal steps become larger, with tree size

increasing. Moreover, threads performing uniform accesses

will be more spread out from one another on average, which

leads to divergence for the same input.
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Figure 8. Time per request.

The variance of response time is a critical metric for QoS [1,

21, 46]. To illustrate the efficiency of Eirene, we collect the

maximal response time, the minimal response time, and the

average response time of Eirene. As the data in Figure 8

show, the average response time of Eirene is about 0.41 ns

per request under the default configuration, which has about

92.6% average response time reduction compared to STM

GB-tree (5.5 ns) and about 86.7% average response time re-

duction compared to Lock GB-tree (3.1 ns). For Eirene, the

maximal response time is 0.42 ns, and the minimal response

time is 0.40 ns. The variance of the response time of Eirene is

only 5%, which means Eirene can achieve a better QoS (more

stable service) compared to those of prior methods (40% for

STM GB-tree [19] and 36% for Lock GB-tree [4]). For the

length of the response time of a request, the uncertain part

is the time for conflict detection and resolution. It is unpre-

dictable where the conflict occurs and how many retries are

required to get a lock or a successful STM commit. With our

optimizations, no conflict detection is needed for query re-

quests. For update requests, conflict detection and resolution

are only needed when leaf nodes are operated for structure

conflicts, and the conflict number is only about 4.8% of that

of the STM GB-tree. Therefore, the uncertainty for response

time is significantly reduced (the detailed conflict reduction

data for the three optimizations is shown in Section 8.3),

which leads to a much smaller variance of response time.
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Figure 9. Metrics profiling of Eirene.

Furthermore, we profile several metrics discussed in Sec-

tion 2, including the average number of global memory ac-

cesses and control-flow instructions for each request. The

normalized results in Figure 9 show that all the metrics are

reduced greatly. The number of global memory accesses and

the control-flow instructions of Eirene is about 3.9% and

2.0% of those of the STM GB-tree respectively, about 8.5%

and 1.8% of those of the Lock GB-tree respectively. We also

collect the number of conflicts per request. The results show

the average number of conflicts for each request for Eirene

is about 4.8% of those of the STM GB-tree.
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Figure 10. Traversal steps.

In addition, we compare the traversal steps of the STMGB-

tree, the Lock GB-tree, and Eirene. As the data in Figure 10
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show, the traversal steps of the STM GB-tree and the Lock

GB-tree are approximately equal because it only relates to

the tree height. The number of traversal steps of Eirene is

much smaller than those of the STM GB-tree and the Lock

GB-tree. For the tree size of 2
23
, the traversal steps of Eirene

are about 67% less than those of the STM GB-tree and the

Lock GB-tree. When the tree size increases, the average steps

of Eirene grow. The reason is that the larger the tree is, the

higher the tree height is, and the key distribution in the leaf

node is more dispersive. Therefore, more horizontal traversal

steps are needed for large trees. For example, the average

horizontal traversal steps for a 2
23
tree are about 1.5, while

those for a 2
26
tree are about 3.4.

8.3 Different Design Choices
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Figure 11. Different design choices.

To understand the performance influence of each optimiza-

tion, we evaluate the optimizations separately. The results are

shown in Figure 11. Since the Eirene implementation is STM-

based, we use the result of the STMGB-tree as the baseline. ‘+
Combining’ means that only the combining-based concurrent

control optimization is applied based on the STM GB-tree.

Eirene enables locality-aware warp reorganization based on

‘+ Combining’, i.e., Eirene. Compared to the STMGB-tree, the

combining-based concurrent control gets a 6.26X speedup.

The performance gains of the combining-based concurrent

control approach mainly come from the simplification of

concurrency control instead of key reduction. Because key

conflicts are eliminated, the subsequent conflict detection

and resolution of the tree traversal can be greatly simplified,

resulting in a significant reduction in memory accesses and

control flow instructions. After applying the locality-aware

warp reorganization optimization, Eirene achieves about a

13.68X speedup as it reduces the traversal steps by exploiting

the locality among adjacent RGs. Moreover, the structure

conflicts are also reduced.

Figure 12 shows the contribution of combining-based con-

current control and locality-awarewarp reorganization on re-

ducing conflicts, memory accesses, and control instructions,

respectively. 𝑐𝑜𝑚𝑏𝑖𝑛𝑖𝑛𝑔 refers to the effect of the combining-

based concurrent control. 𝑙𝑜𝑐𝑎𝑙𝑖𝑡𝑦 refers to the locality-aware
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Figure 12. The contribution of different optimizations on re-

ducing conflicts, memory accesses, and control instructions,

respectively.

warp reorganization optimization. For 𝑐𝑜𝑚𝑏𝑖𝑛𝑖𝑛𝑔, the re-

quests accessing the same key are combined, and only one

request for each key is issued. Then the query and upda-
te requests are distributed to different kernels as described

in Section 7. Although the number of key conflicts in our

default input distribution is small and the reduction per-

centage is not high for these metrics, benefit from different

kernels for different requests, there is no concurrency con-

trol in query kernel, and the number of structure conflicts

is significantly reduced. Thus, it eliminates about 57% of

conflicts (key conflicts). Moreover, it reduces about 96.5% of

memory access and 98.4% of control-flow instructions. For

𝑙𝑜𝑐𝑎𝑙𝑖𝑡𝑦, it organizes multiple originally adjacent warps into

an iteration warp, and the structure conflicts among them

can be reduced. Therefore, it can reduce about 43% of struc-

ture conflicts. Due to the reduced number of traversal steps,

the number of memory accesses for reading nodes and the

number of control-flow instructions for key comparisons are

reduced. It brings about a 3.5% reduction in the number of

memory accesses and about a 1.6% reduction in the number

of control-flow instructions.

8.4 Range Queries
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Figure 13. Range query.

Here, we evaluate pure range query performance under

different configurations. As the data in Figure 13 show, Eirene

achieves a throughput of 1181 million per second for range

query length 4 and a throughput of 1034 million per second
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for range query length 8. In comparison, the Lock GB-tree

achieves a throughput of 235 million per second for range

query length 4 and a throughput of 175 million per second

for range query length 8. These results show that Eirene is

effective for different configurations. Eirene achieves 5.94X

overall performance speedup compared to the Lock GB-tree.

9 Conclusion
In this paper, we design a combining-based concurrency

control system, called Eirene, for concurrent GPU B+trees

to improve performance and QoS. It keeps linearizability by

eliminating key conflicts and optimizing structure conflicts.

Experimental results show Eirene is efficient. It can achieve a

throughput of 2.4 billion per second with only a 5% variance

of response time.
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• Program: CUDA and C/C++ codes

• Compilation: gcc 7.5.0, NVCC 11.4 and CMake 3.10

• Binary: CUDA executables

• Run-time environment: Ubuntu 18.04 LTS with

CUDA 11.4 and GPU driver 515; Python 3.6.9; Nsight

compute 2022

• Hardware: NVIDIA Ampere GPU with at least 20

GiBs of DRAM and at least 20 GiBs of CPU DRAM

• Metrics: Throughput, QoS, Memory instructions and

Control-flow instructions

• Output: Throughput, QoS, Memory instructions and

Control-flow instructions

• How much disk space required (approximately)?:
More than 20GB

• How much time is needed to prepare workflow
(approximately)?: About 30 minutes

• How much time is needed to complete experi-
ments (approximately)?: About 20 hours

• Publicly available?: No

A.3 Hardware Requirements
To better reproduce experiment results, we suggest anNVIDIA

A100 GPU with 40 GiBs memory.

A.3.1 Software Requirements. Our evaluation requires

the CUDA GPU driver 515, NVCC 11.4 and gcc 7.5.0 (or later)

compiler. To profiling GPU metrics, Nsight compute 2022

are needed to install. To run the test scripts, Python 3.6.9 with

numpy is required. You run use the docker ‘nvidia/cuda:11.4.1-

devel-ubuntu18.04’. The artifacts have been tested on Ubuntu

18.04, and are expected to run correctly under other Linux

distributions.

A.4 Installation.
Source codes can be complied using GNU make to build

the executables of Eirene, STM GB-tree and Lock GB-tree.

1. Decompress the artifact archive

$ tar xzvf artifact-eirene-ppopp23-submit.tgz

$ cd artifact-gbtree-ppopp23-submit

2. The building commands of Eirene, STM GB-tree and

Lock GB-tree are wrapped in single script, you can run it to

build all three executables.

$ ./scripts/click-to-compile.sh

3. After this, three executables (eirene, stm-gbtree, lock-
gbtree) are located in three build directories (eirene/build/,
stm-gbtree/build/, and lock-gbtree/build/ ).

A.5 Data Set.
In the evaluation, we generate building tree data of different

tree sizes, including 2
23
, 2

24
, 2

26
and 2

26
. And we generate

test data with 95%/5% query/update ratio.
Generate test dataset by running the script:

$ ./scripts/click-to-gen-testdata.sh

All test data will be generated into directory ./dataset/.

A.6 Experiment workflow
After compiling and generating dataset, use the test-all.py

to run all the experiments to compare Eirene, STM GB-tree

and Lock GB-tree. Use ‘− − 𝑐𝑎𝑠𝑒’ parameter to identify the

test metrics. The options for ‘− − 𝑐𝑎𝑠𝑒’ can be tp, qos, range

, profile. The test script will run executables of Eirene, STM

GB-tree and Lock GB-tree respectively for 5 times, then

output the average results.

A.6.1 Throughput.
Test throughput of Eirene, STM GB-tree and Lock GB-tree.

$ python3 ./scripts/test-all.py –case tp

It will output the throughput of Eirene, STM GB-tree and

Lock GB-tree under 95% query and 5% update workload for

four tree sizes (2
23, 224, 225, 226).

A.6.2 QoS.
Test QoS of Eirene, STM GB-tree and Lock GB-tree.

$ python3 ./scripts/test-all.py –case qos

It will output the max response time, min response time,

average response time and time variance f Eirene, STM GB-

tree and Lock GB-tree under 95% query and 5% update work-
load for 2

23
tree sizes.

A.6.3 Range Query.
Test throughput of range query with length 4 and 8 of

Eirene, STM GB-tree and Lock GB-tree..

$ python3 ./scripts/test-all.py –case range

It will output the range query throughput of Eirene, STM

GB-tree and Lock GB-tree for four tree sizes (2
23, 224, 225, 226).

A.6.4 Profile.
Profile memory access and control-flow instructions under

default workload.

$ python3 ./scripts/test-all.py –case profile

It will output the memory accesses and control-flow in-

structions of Eirene, STM GB-tree and Lock GB-tree under

95% query and 5% update workload for 2
23
tree size.

A.7 Evaluation and expected results
All results in Section 8 are expected to be reproduced from

the data in the artifact.

A.8 Notes
None.
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