GeauxTrace: A Scalable Privacy-Protecting Contact
Tracing App Design Using Blockchain

Tao Lu
Electrical and Computer Engineering
Louisiana State University
Baton Rouge, USA
tlu4 @lsu.edu

Tianqing Feng Brian

Electrical and Computer Engineering
Louisiana State University
Baton Rouge, USA
tfeng3 @lsu.edu

Abstract—Contact tracing is the approach to identifying physi-
cal contact between human beings using a variety of data such as
personal details and locations to discover the potential infection of
diseases. Since the outbreak of the COVID-19 pandemic, contact
tracing has been used extensively to quarantine the people at risk
to stop the spread. Moreover, the data collected during contact
tracing are typical spatiotemporal data, which can be used to
study the disease and discover the spread pattern. However, both
traditional labor-intensive and modern digital-based approaches
have limitations in terms of cost and privacy concerns. In this
paper, we proposed GeauxTrace, a Blockchain-based privacy-
protecting contact tracing platform, which separates private data
from proof of contact. Sensitive data collected by the front-
end app via Bluetooth-based methods are stored locally, and
only the proofs of contacts are uploaded onto the immutable
private blockchain, which forms a global contact graph at the
backend. Our approach not only enables multi-hop risky users
to be notified but also reveals the infection patterns via the
global graph, which could help study diseases and assist the
policymaker. Our implementation shows the feasibility of the
proposed platform in real-world scenarios and achieves the
performance of 20-30 user requests per second.

Index Terms—Contact tracing, Big data
Blockchain application, Privacy protection

infrastructure,

I. INTRODUCTION

Contact tracing is the process of identifying, assessing,
and notifying people who have been exposed to a disease to
prevent onward transmission [8]. Historically, contact tracing
has been widely used to investigate and prevent infectious
diseases and has been more important to the recent COVID-19
pandemic due to the lack of vaccines and medicines. Moreover,
the data collected are typical spatiotemporal data [7], which
can be used to study the disease and discover the spread pattern
using big data mining, and the industry has been long for a
flexible infrastructure to collect and manage these data.

Traditionally, contact tracing is labor-intensive, which relies
on people to recall their contact in the past days or even weeks.
The accuracy and completeness have been the bottleneck

Dept. of Computer Science
Tulane University
New Orleans, USA
fqi2 @tulane.edu

Electrical and Computer Engineering
University of Illinois at Urbana-Champaign
Urbana and Champaign, USA
bcunning @illinois.edu

John Ner
Electrical and Computer Engineering
Louisiana State University
Baton Rouge, USA
jnerl @lsu.edu

Fang Qi

Cunningham Lu Peng
Dept. of Computer Science
Tulane University
New Orleans, USA

Ipeng3 @tulane.edu

and have harmed the effectiveness. Nowadays, technologies
have been used to resolve the limitations and process the
data in digital methods. The data can be collected via a
variety of methods such as Bluetooth, GPS, CCTYV, finan-
cial transactions, etc., and then processed at the backend.
These processing approaches can be roughly divided into
two categories, namely, centralized and decentralized. Cen-
tralized approaches rely on a trustworthy entity (usually the
government or authorities) to collect and analyze data on a
centralized server. These approaches maximized the accuracy
and completeness but brought more concerns about security
and privacy. On the other hand, decentralized approaches rely
on personal devices to detect and trace individually. A good
example is Google and Apple’s exposure project [1], which
relies on the smartphone’s Bluetooth module to discover the
contact and compare it against a downloaded anonymous list
of infected people.

According to our observation, both directions have their
weak points. The centralized method arises concerns about
privacy issues that sensitive information could be abused or
leaked. Further, even though the operator could be under tight
regulation, there is still the risk of a single point of failure. On
the other hand, decentralized methods are privacy preserved
but they also hide important information that could be useful.
For example, there is no way to have an overall picture to study
the spread of diseases. Furthermore, the secondary contact,
who is in contact with the primary contact of a positive patient,
cannot be notified because of lacking multi-layer tracing.

In this paper, we propose GeauxTrace (’Go-trace”), a
blockchain-based privacy-protecting platform to overcome
these challenges. We observed that personal information, such
as identity, location, travel history, etc., is not relevant in
contact tracing; what matters is the de facto physical contact
that happened between different people, which reveals the
infection mechanism. Our approach uses a Bluetooth-based
detection mechanism at the front end and hides the identity

using a random ID. Then the client submits a proof of contact,
which is a transaction signed by two sides of the physical
contact, to our server where the transaction is validated. If
the proof of contact is valid, it guarantees that a real contact
happened, and such information is recorded by the blockchain.

At the backend, valid contact data are traced and used to
generate a global contact graph. Once a user reports a positive
diagnostic result, our server can trace the graph back up to
14 days and inform the users at risk to take action. More
importantly, since we have a global view, users multi-hops
away from the patient can also be discovered and notified by
tracing the graph. In this way, we keep the private information
from leaving personal devices but generate the overview
contact history anonymously and thus provide more useful
information than the above works without sacrificing privacy.
In addition, our platform is open to third-party applications
and provides connectivity to support many other applications.
We have application programming interfaces (APIs) for other
front-end detection and self-test tools to report contacts and
we offer access with permission to our private blockchain and
servers for analytic usage. Our contribution can be summarized
as the following.

o Implemented a Bluetooth-based contact detection appli-
cation (mobile App), which can hide private information
but prove a physical contact happened using crypto-
graphic signatures.

« Proposed a blockchain-based privacy-protecting data stor-
age platform, which can gather anonymous contacts and
generate a global contact graph.

o Offered scalable and flexible connectivity to other up-
stream detection applications via APIs and downstream
analysis tools through access with permission.

o Implemented the whole system and evaluated the perfor-
mance in real-life scenarios.

II. BACKGROUND AND MOTIVATION

In this section, we introduced the background of contact
tracing, blockchain technology, related works, and motivation.

A. Contact tracing and related works

Contact tracing is the method that monitors the data such as
personal details and locations to discover the potential infec-
tion between human beings. Historically, contact tracing has
been widely used to investigate and prevent infectious diseases
and has been more important to this COVID pandemic due
to the lack of vaccines and medicines. Traditionally, contact
tracing is labor intensive, which relies on people to recall
their contact in the past days or even weeks. The accuracy
and completeness have been the bottleneck and harmed the
effectiveness. Nowadays, modern technologies have been used
to resolve the limitations.

Contact tracing has been proven to be effective in studying
and controlling diseases [6]. Especially in the combat against
the recent COVID-19, a lot of efforts have been put into
digital contact tracing to slow down the infection. Digital
contact tracing methods are collecting data via a variety

of methods such as GPS, CCTYV, financial transactions, etc.
Among them, the most used approaches are smartphone-based
ones using Bluetooth [5]. In this paper, we choose this well-
accepted approach because that offers the best availability to
common people with minimal additional cost. Since almost all
smartphones today support the Bluetooth module that can be
used as a detection method, all we need from a normal user
is a piece of app.

In terms of how the data are collected and processed,
these approaches can be roughly divided into two categories,
namely, centralized and decentralized ones. Centralized ap-
proaches rely on a trustworthy entity (usually the government
or authorities) to collect and analyze data on a central-
ized server. These approaches maximized the accuracy and
completeness but bring more concerns due to the following
reasons. First, centralized approaches have a huge social cost
and thus only work well when the number of cases is low.
Second, other government-based approaches bring concerns
about security and privacy. For instance, the Israeli government
tracks the mobile phone data of suspected COVID-19-infected
persons, the South Korean government stores personal data of
known patients in a public database, Taiwan’s medical agency
keeps track of patient’s travel history, and so on [4]. These
limitations harm the effectiveness and the citizen’s willingness
to cooperate.

On the other hand, decentralized approaches rely on indi-
viduals to detect and trace on their own devices, in order to
address privacy issues. A good example is Google and Apple’s
exposure project [1]. This project installs a piece of software
on users’ smartphones, which uses the Bluetooth function to
discover the contact and save it locally. Then every day, an
official authority will broadcast a list of IDs of patients who
have been diagnosed positive. After downloading the list, the
software compares it against the local physical contact records
and checks if there is an overlap. If matching is spotted,
the user is considered exposed and got notifications from the
software. This method and many other similar ones try to
protect privacy by storing the record locally and not sharing the
local contact history with any external sources. The drawback
is that it does not gather the information together so it can
only track one hop contact. In another word, it has no way of
having an overview of the infection pattern nor being able to
notify any user-in-risk two hops away (secondary contacts).

There are also blockchain-based solutions addressing how
to safely store private data on the blockchain. For example, [3]
uses Self-Sovereign Identity (SSI) proofs and [11] uses DAG-
based duo-chain architecture respectively. These approaches
utilize complex cryptographic methods to encrypt personal
data and tried to store them more safely. However, our
approach solves privacy issues in another way. Instead of
saving all the information, we separate the contact information
from the personal data and only the proof of the contact
using signature is stored on the blockchain, which further
improves privacy. In addition, we maintain a graph structure
that can be easily traced and compatible with authorized
connections to third-party applications. We observed that in

the contact tracing study, the identity is not actually relevant.
What matters is the physical contact relation between patients
which reveals the infection mechanism. Our blockchain-based
approach hides the individual identity but preserves the contact
history and thus provides more useful information than the
above works.

B. Blockchain

Blockchain is a trustless distributed system that allows data
to be stored in an anonymous and immutable way. From a
historical point of view, blockchain is the technology that
implements Bitcoin, which is the first peer-to-peer anonymous
payment system (cryptocurrency). Since the invention of Bit-
coin, the usage and the meaning of blockchain technology
has been extended tremendously. For example, the Ethereum
project introduced the smart contract, which allows devel-
opers to design complicated functionality over the security
fundamental of blockchain. Meanwhile, several projects are
trying to implement a variety of consensus mechanisms to
improve efficiency. Some projects are exploring new architec-
ture such as Sharding to resolve the performance bottleneck.
Some projects are working on the second layer to offload the
burden of the blockchain without losing security. Nowadays,
blockchain has been a disruptive technology that has several
variants and extensively serves many industries.

C. Privacy

The uniqueness of blockchain is that it can protect privacy
without sacrificing security. Compared to traditional data stor-
age, blockchain relies on cryptographic methods to achieve
anonymity and security. To interact with the blockchain, users
need to create accounts which are the basic entity on the
blockchain. When an account is generated, the user is given
a pair of keys, which are called a private key and a public
key. The private key is the most confidential and should not be
exposed to anyone other than the owner at any time. The public
key, however, can be safely shared with other blockchain
users and is also used to derive the account identifier address.
The account address, which looks like a string of random
characters, is the only identifier on the blockchain. In this way,
the information on the blockchain is purely anonymous and
the user does need to reveal any identity in order to interact
with the blockchain. Moreover, any user can easily generate as
many as accounts they want to protect themselves from being
traced.

D. Security

The data stored on the blockchain is also secured from
tampering and mutation. Due to the nature of asymmetric cryp-
tography, the private and public key pair offers the essential
feature of the blockchain, verifiability. When users want to
announce something and want to convince others that it is
indeed their intention, they can use their own private key to
generate a digital signature. Then validators on the blockchain
can easily verify that the information is indeed from the sender
using his public key. In this way, any imposture and counterfeit

can be easily detected and rejected by the blockchain, which
ensures all the transactions are valid. Meanwhile, blockchain
technology leverages the hash function to ensure the integrity
and correctness of the historical record. The hash functions are
a collection of functions that can intake any length of input and
generate a fixed length of digested information. Essentially, the
hash function provides blockchain an easy way to check if the
data has been tampered with. On the blockchain, each block
is hashed and the hash value is used to link the next block,
which results in a chain of traceable hash values, often in a
tree structure. By checking the hash values, any participating
node can spot the tampered block and reject it, which in turn
guarantees the correctness of all the history. Toidentifierh the
validity of the new block, we get a verified result in a trustless
world.

III. DESIGN AND IMPLEMENTATION

In this section, we present the design details of our system.
We start with the overall design and then reveal the imple-
mentation and rationale of subsystems, namely the private
blockchain, the client, and the server. More importantly, we
discuss how the subsystems work as a whole using an example
and the extensions of the platform.

A. Overview

From a top-level perspective, our system can be divided
into three subsystems: namely, the Private Blockchain and
validators, the client app, the Geaux (sounds “Go”) Server
and the notification service. Figure 1 shows an overlook of
the whole system and the data flow. In general, the private
blockchain is where data are stored, and it serves as a
secure and privacy-protecting database. Validators are working
together with the private blockchain to enhance the security.
The client app is where Bluetooth-based contact detection is
performed and where users get notifications. The Geaux Server
sits in the middle and is in charge of gathering the data to
generate the global graph and handle notifications and respond
to queries. In the following sections, we introduce the details
of these subsystems and how they interact with each other.

B. Private Blockchain

Our Private Blockchain subsystem is the backbone of the
whole platform, which serves as the data storage. In general,
a blockchain system is composed of several nodes connecting
with each other and forming a distributed network. These
nodes oversee processing the transactions independently and
maintaining consistent data using a consensus algorithm. There
are many options to build a blockchain network. For example,
we can choose the data structure, the degree of permission,
and the consensus mechanism. In the following sections, we
discuss our design rationale and implementation details.

1) Choosing the model: First, we need to choose the
blockchain model. There are several options to build a
blockchain network. For example, Bitcoin uses an unspent
transaction output (UTXO) model, which can easily track the
source of each transaction but it fits more appropriately for the

GeauxTrace Platform

Client App Geaux Server

Scan &
Broadcast

BLE Protocol

a

Users at risk
Local Storage

Back Tracing

—4

Private Blockchain

Node 1

Smart
Contract

¥

y
Wallet and Sync J Notification

Notification Channel L

Apple AP

Validator

Signature

Validation

Fig. 1. Overall design of GeauxTrace platform

use of cryptocurrencies. On the other hand, Ethereum is using
another model that saves the state of each account and keeps
updating it by processing the transactions. The big advantage
of having a state is that it supports the smart contract that we
can program the logic according to the state change.

We decide our platform must be compatible with smart
contracts because we are aiming at flexible functionality. Using
smart contracts enabled us to deploy automated, programs and
store the contacts in the smart contracts’ storage. Given all the
available smart contract compatible options such as Ethereum,
Hyperledger Fabric [2], EOS [10], etc. We decided to build it
based on Ethereum. It is the most well-supported ecosystem
because of its largest developer community and the most
supported tools. Choosing Ethereum retains the potential for
connecting with other tools in their most popular ecosystem.

2) Permissoned or permissionless: Our second decision
is to choose between the permissioned and permissionless
models. The permissioned (private) blockchain, means we can
control who can join the system. The permissionless (public)
blockchain, means all the blockchain history, though encrypted
and anonymous, is open to the public. We chose our design
as a permissioned model due to the following reasons. First,
there is no need to expose health information to all non-related
individuals even though they are anonymous. Our object is to
provide a global view of contact tracing for research purposes
and only notify the related people at risk. Second, running the
permissionless model requires much more resources on the
consensus mechanism, which in turn limits the performance of
the system. Our choice is a balance between performance and
openness without losing security and compromising privacy.

3) Choosing the consensus: The last key point to determine
is choosing the consensus algorithm. Such algorithms deter-
mine how the nodes in the blockchain network agree with
each other. There are three dominating and time-tested algo-
rithms, which are Proof-of-work (PoW), Proof-of-Stack (PoS),
and Proof-of-Authority (PoA). PoW is known as the mining
algorithm of Bitcoin and is also criticized as a tremendous
waste of power. PoS is more environment-friendly than PoW

but also brings vulnerability. These two consensus algorithms
are a better fit for the permissionless setup and are barely
beneficial in our private blockchain. Therefore, we pick one of
the PoA algorithm Cliques as our consensus algorithm, which
is already proven to be effective and efficient in Rinkeby and
Goerli systems.

4) System Setup: The blockchain system is normally com-
posed of a series of nodes, which are in charge of processing
the transactions and appending them to the local history
blockchain. As a prototype, we set up our blockchain nodes
using three virtual servers on a cloud. In the production
environment, the number of nodes can be increased without
sacrificing performance. Actually, the more nodes joined the
system, the more secure the system as a whole because more
faulty nodes would be tolerated. To configure the blockchain
as a private one, a secret network id is chosen and shared only
among participating nodes, so that other people cannot connect
to our system without knowing it. In addition, we enhanced
the security by using the IP filter to block any unauthorized
access. Our nodes are assigned a static and known IP address
that is registered on the whitelist, which allows these nodes
to discover and connect with each other. These are done
by configuring the genesis file and the node software before
establishing the system.

One thing worth noting is the decentralized nature of our
platform. As the only entity testing this system, our team
controlled all three nodes, which makes the platform looks
centralized. However, in real-world scenarios, each partic-
ipating entity, such as medical authorities, government, or
research institutes, should set up their own nodes and never
expose their private keys. In this way, they are governing
and protecting the system collaboratively, which makes the
platform decentralized. They can vote to add or remove signers
democratically and cooperate to protect the system. Any attack
attempting to alter the blockchain record requires control
of more than half of the total nodes. Therefore, it is also
encouraged for each participating entity to set up multiple
nodes to further strengthen decentralization and security.

Blockchain nodes are working independently to compose a
decentralized network. To guarantee data consistency between
the nodes, the consensus mechanism must be deployed. Before
the whole system starts to run, each node needs to create
an account in order to participate in the data exchange and
validation. During the account creation, a private key will
be issued and should always be kept secret by the owner.
To configure the blockchain as private, separate accounts are
created on the nodes individually and they will serve as the
validators for the PoA consensus. Later, these validation nodes
are collecting transactions sent by the clients and package them
into blocks with valid signatures. Only the block validated by
the majority of authorized validators is considered valid and
can be appended to the blockchain history. Meanwhile, we de-
ployed an auto-pause script that is monitoring the transaction
pool constantly. When the pool is empty, the production of
blocks is paused, so that we can avoid generating unnecessary
blocks. After all these steitse configured properly, the network
is ready to process any transactions.

5) Smart contract: Smart contracts, in general, are pro-
grams running on the blockchain, which handle the state of all
the accounts and define the functions to execute when called.
Our smart contracts are first coded using a specific high-level
language called Solidity and then compiled into Ethereum-
compatible bytecodes. Finally, these codes are deployed onto
our private blockchain during the system setup. Once success-
fully deployed, it can be called by sending proper transitsns
from the client or the server. For example, the client can send
proof of contact between two users to update their storage.
Also, the server can query the smart contract to get the stored
contacts of a user. By checking these results, the server can
do additional jobs accordingly, which we will introduce later
in the server section.

Our smart contract uses hash tables as storage where the
contacts of each user are stored. The biggest advantage of
using a hash table is the speed because the lookup time is
O(1) in complexity. It also defines all the functions such as
how to validate the transaction and update the storage, and
what data should be returned to the server.

6) Faucet: To interact with the blockchain, any account
needs some initial funds to be able to send transactions. This is
because the original Ethereum requests some tokens to be used
as a fee, which is also known as the gas fee. The existence of a
gas fee requires the user to pay some token when transactions
are sent. So, we set up a faucet service to distribute these
tokens to make sure the user has enough balance. However,
due to security reasons, we limit the total amount of tokens
a specific account can request in 24 hours to minimize the
abuse.

7) Validation: The contact log, originally generated by the
smartphone client, is validated before they are able to be
recorded on the blockchain. After receiving the message, the
server will validate the signatures of the contact log and send it
to the smart contract. The purpose is to guarantee two aspects:
1) All the contacts are real, which means signatures from
both counterparts are valid. 2) A user is only updating his

own account, which protects against the attacks. Once the
blockchain got the transaction, the function defined in the
smart contract will be triggered and the log will be stored
on the blockchain as a historical record. If it is the first time
that a user is added to the blockchain, specific storage space
will be created for this user. If this is the follow-up update,
then the contact log will be appended to the user’s existing
storage space. According to the suggestions from CDC, we
are only tracing back up to 14 days, therefore any data older
than that can be removed to save storage space

C. Client

1) Overview: The client is the smartphone application
where contacts are detected, and data are collected. Our
approach relies on the built-in Bluetooth Low Energy (BLE)
module of smartphones, and we designed GeauxTrace (pro-
nounced “Go-trace”) app for both the Android OS and iOS
systems. As shown in Figure 1, the GeauxTrace app is
composed of four major parts: the BLE protocol used in
contact detection, the Local Storage module, the wallet and
synchronization module which handles the interaction with
blockchain, and the notification channel to receive notifica-
tions.

From an overview, once a new user registered on our
platform, the app will generate a unique UserID randomly,
which is the only identifier used in our platform. When
users start the app, the Bluetooth protocol starts scanning and
broadcasting to discover the other users nearby. Our data in
the air are encrypted and we set an app ID to guarantee that
only our app can decode it. Once another app is detected, they
exchange the UserID and mark the timestamp. The scanned
results are temporarily saved in local storage. We checked the
distance by measuring the RSSI of Bluetooth and monitored
the contact duration.

If a physical contact meets the criteria (15 minutes and 6
feet) suggested by CDC [9], we consider it valid physical
contact. Our app will periodically update the new contacts
to the backend blockchain by submitting proof of contact
happened. And if risky contact is detected, the user will get
notified through the app. GeauxTrace is decentralized, with
user privacy as the top priority. No personal data is required to
start using the app, nor does the app record any personal data
when using it, such as sensitive GPS locations. In the following
sections, we introduce the key modules, design details, and
how the app works in detail.

2) Contact log data structure: The contact log is the
information that records the fact of physical contact. It includes
the counterpart’s identifiers, the timestamp when it happens,
the time duration, the estimated distance, and the proof of
contact. Such data are generated by the Bluetooth protocol
and then saved locally in the app until they are synchronized
with the server in order to be processed on the blockchain. To
make our design more secure, the data is encrypted and saved
in our app’s private storage, which prevents other malicious
apps from accessing our data. We introduce these concepts
below in detail.

Identifier: The identifier (ID) in our protocol is called
userID, which is a 128-bit long integer. In order to conceal the
user’s identity, we did not use any sensitive information that
could potentially harm the user’s privacy, such as Bluetooth
MAC address, GPS locations, Apple ID, or Android identifier
about the device. Instead, we generate a random userID for
each user individually, when they register. Such ID is long
enough so that even though it was generated randomly, there
is little chance that two users are going to share the same id,
causing a collision.

Proof of contact: The proof of contact is the pair of digital
signatures from both ends of a contract, which is used to
protect any faking. When the user installed our app, they will
be granted a pair of public and private keys. Then the user
will generate a signature of their ID to prove the ownership
of his ID and include that in the Bluetooth broadcasting
payload. When a contact happens, the receiver will receive the
message and include the signature in their contact log together
with another signature signed using his own key. Then both
signatures are validated by the blockchain later to prove the
ownership of both IDs. Thus, we can guarantee a contact did
happen between two real IDs and was detected by the device.

Timestamp and Duration: The timestamp marks the time
when the contact happens, and the duration indicates how long
it goes. The timestamp relies on the smartphone to provide
the time from OS. The duration is checked by checking the
signals periodically. We perform the scanning with a fixed time
interval. So, if two consecutive scans detect the same target,
we consider the contact still in process. To determine how
long a contact should be considered risky, we followed the 15
minutes rule suggested by CDC, but this is subject to change.

Estimated Distance: The contact distance is estimated by
measuring the Bluetooth signal strength, aka Received signal
strength indication (RSSI). Ideally, the signal strength is de-
creasing as the distance increases. Therefore, we can estimate
the distance by checking the signal at the receiver side. It is
worth noting that we do not need precise distance because 1)
There is no way to measure accurate distance only using the
Bluetooth-based method. 2) An estimated distance satisfies our
need. The first point is due to the fact that Bluetooth can be
easily interfered with by walls, doors, and other obstacles. And
the latter is because we only need to determine if a contact
has a risk of disease spreading. Therefore, we set up an RSSI
threshold to estimate the distance of 6 feet as suggested by
the CDC.

3) Bluetooth protocol: The Bluetooth protocol plays a key
role in contact tracing. It defines how to detect contacts, and
generate and exchange contact logs. Our Bluetooth protocol
defines the data structure of the Bluetooth payload and han-
dles both the signal sending and receiving. Once the app
is running, it broadcasts and listens simultaneously via the
smartphone’s built-in Bluetooth module, and an App ID is used
to distinguish our detection from other Bluetooth services.
When a device discovers a potential contact, it will set up
a private channel and exchange the information to generate
proof of contact. Later, this information is gathered in the

Payload
Characteristic

. Peripheral
{Advertlsmg} [Services} [
BLE
Peripheral i [l

B connects to A
to establish a
channel

| s
.

B reads RSSI for A
at regular
intervals to

estimate distance

L]

Central B
Read Payload Measure
Distance

Tim —

A

ApplD, UserlD,

Timestamp
Proof of contact

B discover A

Service
Discovery

Scanning
Peripherals

Fig. 2. Bluetooth protocol and lifecycle

daily contact logs and uploaded to the blockchain. Figure
/refbluetoothProtocol shows the procedure of the Bluetooth
protocol and the data structure of the payload. We explain the
details below.

Payload data structure: The information in the air, aka
the Bluetooth payload, is composed of three parts. The first
eight bytes are the Application ID (AppID), which is used to
distinguish our app from the others so that only our app can
decode the payload correctly. Meanwhile, the AppID can also
be used to connect our app with third-party apps to provide
more features. For example, we successfully connect our app
with other smartphone-based self-testing applications to allow
users to test and report the diagnostic results. The next section
in the payload is the UserID, which is the anonymous identifier
to locate the user in our system. Next, follows the timestamp
which indicates the current time. The last section is the proof
of contact which contains the signature of the sender and his
public key, which can be used to validate the ownership of his
UserID.

Scanning and Broadcasting: When the app is started, it
broadcasts and scans simultaneously and periodically. Broad-
casting is sending out the information so that it can be decoded
by another smartphone running our app, which is also known
as the peripheral mode. Scanning is actively checking the
Bluetooth signal in the environment and filtering out the
ones from our app, which is also called central mode. Our
scanning and broadcasting are not continuous. Instead, they
are performed periodically with a fixed scan interval and
broadcast interval. This is because we can tolerate a small-time
delay when contact is happening, and more importantly, we
can reduce power consumption. Obviously, the more frequent
Bluetooth scanning is performed, the more accurate the contact
could be detected. So, the user can trade-off between accuracy
and power consumption by changing the configuration in the
App.

4) Detection Procedure: Figure 2 describes a full cycle of
BLE detection. GeauxTrace will automatically advertise and
scan according to the state of login and Bluetooth status of
the device. A device scan is initiated up to eight times per

minute to discover other devices running the same protocol.
Device A running the BLE in peripheral mode means it was
broadcasting its signal and ready to be discovered. Device B
in central mode is actively searching for neighbors and trying
to set up the channel. When A and B are in the range of each
other, B is able to discover A, and a channel is set up through
the peripheral and discovery service.

When a device is discovered, the app will check if the
target device offers the same service protocol and the OS of
the device. If both are correct, a connection between the two
devices will be established to exchange payload data. Payload
data is obtained from the target device once the payload
characteristic has been discovered and received. Meanwhile,
the RSSI is read periodically when the connection is set up,
which is then compared to the threshold value to verify if
the data should be discarded or stored in the contact list. If
criteria are met, we check the target UserID and timestamp to
determine the contact duration. if two consecutive scans detect
the same UserIDs, we consider the contact still in process.
Until the contact discontinues, the duration is calculated based
on the recorded timestamp, and the contact log is generated
and stored in the persistent memory of the devices.

Client App, Android / iOS

A blockchain Node

Wallet Module

Generate
Keys 1

BLE module

>
Contact
Detection

Signature Validator

Signature
validation
Forward to

ETH JSON RPCF"{ Ethereum Node

Get token
from faucet

Generate
i Contact Log

Create the
blockchain
transactions

Slen HTTP
transactions

Fig. 3. Client interact with Blockchain

Other nodes

5) Wallet and Blockchain interface: To send transactions
to the blockchain, a piece of software is needed to send the
transactions and control the account, which is called a wallet in
the blockchain context. Even though our project does not need
any cryptocurrencies, we use the same term for the submodule
that composes the blockchain transaction and generates the
signature. Meanwhile, the wallet will hold the tokens requested
from the faucet and pay the gas fee as we mentioned above.

Figure 3 shows the interaction between the mobile app and
the blockchain. When a user installs our app, the built-in
wallet module will automatically generate a pair of public
and private keys. The private key is saved locally and will
never be exposed to the external and the public key is the
blockchain account address. When it is time to synchronize
with the blockchain, the wallet will compose the transaction
with the recorded contact log and sign it using its private key.
The signature is sent together with the transaction to guarantee

the ownership of the account. By validating such signatures,
we guarantee that a user can only update their own account.
Whenever the user’s balance runs low, the wallet will also
send a request to the faucet server. As long as the user did
not request an excessive amount, they will be issued tokens
automatically.

In terms of the interaction with blockchain, it has been well-
known that using a wallet is complicated and cumbersome.
Our design keeps it to the minimum that a normal user
does not need to have any knowledge of the blockchain and
cryptocurrencies. We hide the wallet under the normal App
appearance so that a normal user will not even realize the
interaction with the blockchain. The generation of keys, the
signature, and the requests for tokens are all automatically
done in the background to reduce the user’s hurdle.

6) User interface: GeauxTrace is designed to be easy to
use and requires little interaction. Users need to sign up for
an account using an email address, which is only used for
password recovery. After login, users can keep the app in the
background, and the app will work automatically without any
further interference. It will detect the contacts around the user
to generate a local contact report and synchronize with the
server every several hours (typically 24 hours). If a user is
diagnosed as positive, the user would need to self-report by
using the report function in the app. Once the server received
the report, a back tracing is performed in the contact history
to find out users at risk, and a notification is sent anonymously
to these users to give them a warning.

We use Firebase by Google to handle account authentica-
tions and notification services. All the information that users
used in creating the account, such as username(email) and
password are hashed, encrypted, and saved to the database on
Firebase. Every time a user logs in, the login information is
encrypted and compared to the information on the Firebase
server, therefore no password is revealed during the network
transportation. Meanwhile, Firebase handles the notification
service by issuing a unique FCM(Firebase Cloud Messaging)
registration token to each user. The FCM token is created
and fetched from Firebase servers during the app installation.
Our server also uses such tokens to identify the phone(app)
that should be anonymously notified when they have been in
contact with a positive user. The Firebase Cloud Messaging
service (FCMs) and Apple Push Notification service (APNs)
handle this process, and the user receiving the message is
instantly notified.

During our design, there are several considerations that aim
at protecting privacy. For example, it was possible that a user
can make up a username instead of using a real email if he
gives up the password recovery because we did not rely on any
real-world personal information. In addition, a user can only
be notified at most once every 24 hours. This limitation not
only protects users from flooded notifications but also conceals
the social identity of contacts. For example, once a user got a
notification, it simply indicates that one of the contacts in the
last 14 days is reported as positive. Neither the contact time
nor the contact’s id will be revealed. It does not necessary to

be the contact in the last 24 hours, therefore it is unlikely that
the person could be known. The user will always be notified
as soon as the first risky contact is reported. But if multiple
notifications are triggered, they can also configure how often
they want to be notified in their app, to have a better user
experience.

7) Storage security: : Since it is expected that devices
will move in and out of range, sometimes permanently, the
information received during scanning and connection is stored
in a temporary cache. The cache is purged and refreshed once
the information on the device has been out of range for at
least an hour. The data is deleted once the user signed out of
their local account on the App.

The data required to create an account and login does not
contain personal information. Our app generates UserIDs that
are not linked to the user’s personal data. Location information
is not used in our application. The user identification infor-
mation and data are safely stored in the phone’s persistent
data through Apple’s Core Data API. A data model is created,
and it has minimal data structures for simple read/write. Any
uploaded data by our app is hashed and encrypted. The system
handling the uploaded data uses decentralized and blockchain
techniques to protect it from potential hacks and ensure user
privacy.

On the cloud side, contact data has an expiring time of 14
days, according to the suggested threshold by CDC. Expired
data are removed from the account by the smart contract
without interaction and will not be used in the back tracing
algorithm. To meet the privacy policies, a user can also request
the deletion of his account from the blockchain. Due to the
decentralized nature of blockchain, a such request needs to be
approved by the majority of node runners. And since our setup
is permissoned blockchain, where we can assume the minimal
malicious behavior of authorized anticipates, this is acceptable
to our needs.

D. Server

We set up our server to handle the back-tracing and generate
a global contact graph. Whenever a patient is reported positive,
it can specify the users at risk and generate notification
requests to the FCM service and APN service. To reduce the
network latency, the server is set up on the same machine with
the blockchain node. It is possible that multiple servers can be
set up and a network load-balancer should be used to balance
the traffic load. And the number of servers should scale up as
the number of users increases over time.

1) Back tracing: Figure 5 shows the logic of back tracing
and the generation of notifications. When the blockchain
receive a contact log, it will first check if the owner has
reported as positive. If the account owner is negative, the
server will only update the account status by forwarding the
transaction to the smart contract. After the smart contract is
executed, the account’s contacts stored are updated. There is no
point in doing back tracing for a negative user automatically,
but our server can still do back tracing if necessary, which can
be done via API for research purposes.

Block B

B-A
B-C
B-D

User\i

Blockchain
Global Contact

L

Encrypted and
Anonymous Identity in
Blockchain

"

Block E

E-C

User X

User E

Fig. 4. Interaction Illustration

Once the server receives a positive report, it will perform
the back-tracing algorithm to find out who should be informed.
The process starts with pulling up the contact history from the
blockchain by sending a query to the blockchain node. Since
such a query does not modify the storage of the blockchain,
aka view only, it was not executed by the EVM. It does not
need to be mined nor append to the blockchain history. A view-
only function is programmed explicitly in the smart contract so
that it can be handled by the blockchain nodes directly. These
nodes will query their local blockchain history to pull up the
contact log in the last 14 days and return it to the server. This
is also the reason our server is set up on the same machine as
the blockchain node because it reduces the data transfer time.
However, splitting these two roles into separate machines is
feasible but adding some network delays as a trade-off.

After receiving the data from the blockchain node, the
server will do a depth-first search to gather all the possible
contacts’ UserID. Once these IDs are collected, it can search
for the FCM token bonded with these ids and send notification
requests to the Firebase service, which later sends out notifica-
tions to the corresponding smartphones. Meanwhile, the traced
data are saved in a graph structure in the server node, so that
it can be used for data mining. The server can also respond to
external queries via APIs so that external user does not need
to download the data. In the section below, we explain how
this works use through an example.

2) How the system works: Figure 4 shows how the subsys-
tems described above work together. Suppose users A, B and
C have a meeting together, their app should be able to detect
each other and generate their local records independently. User
A’s app will record a contact of A-B and A-C; user B’s app
will record B-A and B-C and so on. Similarly, if there is
private contact between B-D and C-E, their client will record

Sending Notification using server

Send list to
server for
notification

Generate
Contact

- Backtrace .
Positive-»| 14 davs —> listof [
Log i contact

Negative

Update Status Update Status Notify Contacts

Fig. 5. Back tracing and notification logic

such info as well as shown in the Figure. Then these clients
will send update messages to the blockchain independently,
therefore the contacts will be stored in the different blocks.
For example, block A will only store the contact log submitted
by user A and so on. After receiving the updates, the server
will generate the contact graph like the one in the middle. A
through E will be the vertices identified by their UserIDs and
the edges indicate the contacts between the users, such as edge
AB, BC, etc.

Later if user B is diagnosed as positive, he should submit
his result by reporting via his app. Once the server got the
positive update, it will pull up the history from the blockchain
and get B-A, B-C, and B-D from Block B (marked red) and
locate vertex B as risky (red vertex) in the graph. Then we can
do the breadth-first search starting from the risky vertex B. If
vertex A’s contact is not in the server’s cache, it queries the
blockchain to get A-B and A-C. Similarly, by query contacts
of C, we got C-A, C-B, and C-E.

We define the vertices x hop away from the nearest positive
vertex as the x-level risky vertices. Therefore, vertices A, C,
and D are level-1 risky (in orange), and vertex E (in blue)
is level-2 risky. Finally, we can send different notifications
to these risky users and give them advice on how to react
accordingly. For example, the level-1 risky users, aka primary
contacts, need to be tested and quarantined. And level-2 risky
users, aka secondary contacts, only need to monitor symptoms
and reduce exposures.

Treating the users at different risk levels will allow us
to control the scope of notification and give users different
suggestions, which truly help them to prepare more appropri-
ately, thus could potentially improve the effectiveness and user
experience. Meanwhile, from a global perspective, it gives us a
better understanding of how the disease is spread as time goes
by and reveals more information compared to related works
which merely send out notifications passively.

3) Cybersecurity Considerations: Although we mentioned
our authorized nodes can be trusted to some degree, we cannot
trust external entities. We implement several techniques to
protect our server from attacks. Firstly, we set up a firewall to
filter the whitelisted IP addresses. Our servers are assigned
static IPs that are registered on a whitelist. Only queries
from these permission-ed IPs are accepted by the Blockchain,
which protects against unauthorized access. Secondly, all the

%, %,
Y %
Othertestlng %,
Apps Y
@ Resu\lAP\—' EE
contact,
GeauxTrace — AP\ [} 6 S
Report Result eauxserver

Authorization
Other

Firewall
Contact Detection Apps

Join
“glockehain

GeauxTrace
Blockchain
Global Contact,

Fig. 6. APIs and Connectivity

communication between the servers and clients is encrypted
by the HTTPS protocol, which minimizes the possibility of
middleman attacks. In addition, any transactions submitted by
the client will be accompanied by a signature generated by the
wallet on the mobile device. This method guarantees a user can
only modify their own record because invalid signatures can be
easily detected, and such transactions will be rejected. Finally,
we limit the rate of submitting results from a specific client,
and the requests will be rejected if exceeding our threshold.
This protects us from DoS attacks and any malicious abuse of
the client app.

4) Scalable Connectivity: Our platform is designed to be
flexible and scalable, which means it can connect to other tools
from both upstream and downstream sides. To the upstream,
we opened our platform to other self-testing and/or contact
tracing mobile apps. We defined our APIs, which specify what
data and in what format a contract should be submitted to our
blockchain. Additionally, we also reserve optional metadata
which can be customized for specific usage. The left part
of Figure 6 shows our two APIs, which are used to submit
contacts and diagnostic results respectively. Any third-party
app can submit its data using either or both APIs, after being
issued an authorized token to pass our firewall.

On the downstream side, we open our system in two ways.
One offers an API to access the graph information from
the GeauxServer. We can authorize a third party to query
our server and use it as a normal database to research the
pandemic. The other way provides the opportunity to run a
node composing the private blockchain. We welcome properly
authorized entities to join our system and set up their nodes so
that they have full access to the blockchain record. In that way,
they are free to build their analysis tools and more customized
applications.

IV. EVALUATION

We set up our blockchain network on three virtual servers
using a cloud service. Each of them is equipped with two
cores of an Intel Xeon Gold 6248R CPU @ 3.0 GHz, 8GB
memory, and 64GB storage with Redhat Linux OS. Our
servers are set up on the same nodes to reduce network latency.
Our smartphone apps are developed in Android Studio and
Apple Xcode, supporting the latest Android 12 and iOS 15

Request Latency

250 B1 500B1 750 B1 1000 B1 250 B2 500 B2 750 B2 1000 B2 250 B3 500 B3 750 B3 1000 B3

30

2N
o o

Latency in secons

0

Iterations and Benchmarks

m1server 2 servers

Overall Performance
80

60
40
20

0

Requests /s

250 B1 500 B1 750 B1 1000 B1 250 B2 500 B2 750 B2 1000 B2 250 B3 500 B3 750 B3 1000 B3

Iterations and Benchmarks m 1 server 2 servers

Fig. 7. Latency and Performance

respectively, and installed on a variety of models such as
Samsung, Google Pixel, and iPhone.

To evaluate our proposed design, we did extensive ex-
periments revealing the overall performance of the whole
system. We created concurrent requests using Postman and
flooded them into the server to mimic the concurrent requests
from users. As Figure 7 shows, we have three groups of
benchmarks: B1 is the user’s contact update, which sends
a transaction with the contact information to the server and
the transaction is recorded by the blockchain. B2 is the
same user’s update as B1, plus a generation of the graph
by pulling blockchain data from the server. B3 is the back-
trace function, which sends a positive result to the server and
triggers the back-trace analysis algorithm. As the x-axis labels
indicate, we send 250, 500, 750, and 1000 copies of each
benchmark concurrently reflecting the different scales of users.
Meanwhile, we repeat the same benchmark on a 1-server setup
and a balanced 2-server setup.

We measured two metrics for the performance: the latency
and the performance. The latency defines as the average time
between a request being fired and a response being gotten,
measured in seconds. In the top half of Figure 7, it was
expected that the latency would go up as the requests increase,
but using a second server will always reduce the response
latency. The performance, shown at the bottom part is the
average number of requests processed per second (1/s). Bl is
much faster since it does not trigger the database writing and
the maximum speed is 67 1/s on two servers. On the right,
pulling up the contact from the blockchain takes more time
and dragged the number down to 20 1/s on one server and 22
/s on two servers.

V. CONCLUSION

In this paper, we proposed GeauxTrace, a scalable privacy-
protecting contact tracing platform. It detects physical contact
using the Bluetooth module in the app and stores the proof of
contact anonymously on the private blockchain. Then through
the server, we can generate a global graph of the contact graph
and notify the multi-level users at risk. Our platform can also

10

connect with other upstream detecting apps and downstream
analysis tools via APIs. The evaluation shows the feasibility
and performance of the platform in real-world scenarios.

VI. ACKNOWLEDGEMENT

This work is supported in part by an NIH grant
1U01AA029348-01. Anonymous referees provide helpful
comments.

REFERENCES
[1]

[2]
[3]

https://www.google.com/covid19/exposurenotifications/.
https://www.hyperledger.org/.

E. Bandara, X. Liang, P. Foytik, S. Shetty, C. Hall, D. Bowden,
N. Ranasinghe, and K. De Zoysa, “A blockchain empowered and privacy
preserving digital contact tracing platform,” Information Processing &
Management, vol. 58, no. 4, p. 102572, 2021.

H. Cho, D. Ippolito, and Y. W. Yu, “Contact tracing mobile apps for
covid-19: Privacy considerations and related trade-offs,” arXiv preprint
arXiv:2003.11511, 2020.

M. Cunche, A. Boutet, C. Castelluccia, C. Lauradoux, and V. Roca, “On
using bluetooth-low-energy for contact tracing,” Ph.D. dissertation, Inria
Grenoble Rhone-Alpes; INSA de Lyon, 2020.

K. T. Eames and M. J. Keeling, “Contact tracing and disease control,”
Proceedings of the Royal Society of London. Series B: Biological
Sciences, vol. 270, no. 1533, pp. 2565-2571, 2003.

J. Han, J. Pei, and H. Tong, Data mining: concepts and techniques.
Morgan kaufmann, 2022.

W. H. Organization et al., “Ethical considerations to guide the use of
digital proximity tracking technologies for covid-19 contact tracing,”
2020.

L. Setti, F. Passarini, G. De Gennaro, P. Barbieri, M. G. Perrone,
M. Borelli, J. Palmisani, A. Di Gilio, P. Piscitelli, and A. Miani,
“Airborne transmission route of covid-19: Why 2 meters/6 feet of inter-
personal distance could not be enough,” p. 2932, 2020.

B. Xu, D. Luthra, Z. Cole, and N. Blakely, “Eos: An architectural,
performance, and economic analysis,” 2018.

H. Xu, L. Zhang, O. Onireti, Y. Fang, W. J. Buchanan, and M. A. Imran,
“Beeptrace: blockchain-enabled privacy-preserving contact tracing for
covid-19 pandemic and beyond,” IEEE Internet of Things Journal, vol. 8,
no. 5, pp. 3915-3929, 2020.

[4]

[5]

[6]

[7]
[8]

[9]

[10]

(11]

