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Closest Pair

• Problem: Given P⊆R2, |P|=n, find the distance 
between the closest pair in P
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Plane Sweep: An Algorithm 
Design Technique

• Simulate sweeping a vertical line from left to right across the plane.
• Maintain cleanliness property: At any point in time, to the left of sweep 

line everything is clean, i.e., properly processed.
• Sweep line status: Store information along sweep line
• Events: Discrete points in time when sweep line status needs to be 

updated
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Plane Sweep: An Algorithm 
Design Technique

• Simulate sweeping a vertical line from left to right across the plane.
• Maintain cleanliness property: At any point in time, to the left of sweep 

line everything is clean, i.e., properly processed.
• Sweep line status: Store information along sweep line
• Events: Discrete points in time when sweep line status needs to be 

updated

Algorithm Generic_Plane_Sweep:

Initialize sweep line status S at time x=-∞
Store initial events in event queue Q, a priority queue ordered by x-coordinate
while Q ≠ ∅

// extract next event e: 
e = Q.extractMin(); 
// handle event:
Update sweep line status
Discover new upcoming events and insert them into Q
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Plane sweep for
Closest Pair

• Problem: Given P⊆R2, |P|=n, find the distance of 
the closest pair in P

• Sweep line status:
– Store current distance ∆ of closest pair of points to the 

left of sweep line
– Store points in ∆-strip left of sweep line
– Store pointer to leftmost point in strip

• Events: All points in P. No new events will be 
added during the sweep. 
→ Presort P by x-coordinate. 

Cleanliness property
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Plane sweep for
Closest Pair, II

• Presort P by x-coordinate
• How to store points in ∆-strip?

– Store points in ∆-strip left of sweep line in a balanced binary search tree, 
ordered by y-coordinate
→ Add point, delete point, and search in O(log n) time

• Event handling:
– New event: Sweep line advances to point p∈P
– Update sweep line status:

• Delete points outside ∆-strip from search tree by using previous leftmost point in 
strip and x-order on P

• Compute candidate points that may have distance ≤ ∆ from p:
– Perform a search in the search tree to find points in ∆–strip whose y-

coordinates are at most ∆ away from p.y. 
→ ∆ x 2∆ box

– Because of the cleanliness property each pair of these points has distance ≤∆. 
→ A ∆ x 2∆ box can contain at most 6 such points.

• Check distance of these points to p, and possibly update ∆
– No new events necessary to discover

O(n log n)

O(n log n) total

O(n log n + 6n) total

O(6n) total

Total runtime: O(n log n)

∆

∆

∆
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Balanced Binary Search Tree 
-- a bit different
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key[x] is the maximum key of any leaf in the left subtree of x.
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Plane Sweep: An Algorithm 
Design Technique

• Plane sweep algorithms (also called sweep 
line algorithms) are a special kind of 
incremental algorithms

• Their correctness follows inductively by 
maintaining the cleanliness property

• Common runtimes in the plane are O(n log n):
– n events are processed
– Update of sweep line status takes O(log n)
– Update of event queue: O(log n) per event
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Geometric Intersections

• Important and basic problem in Computational 
Geometry

• Solid modeling: Build shapes by applying set 
operations (intersection, union).

• Robotics: Collision detection and avoidance
• Geographic information systems: Overlay two 

subdivisions (e.g., road network and river 
network)

• Computer graphics: Ray shooting to render scenes
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Line Segment Intersection

• Input: A set S={s1, …, sn} of (closed) line 
segments in R2

• Output: All intersection points between segments 
in S
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Line Segment Intersection

• n line segments can intersect as few as 0 and as many as        
=O(n2) times

• Simple algorithm: Try out all pairs of line segments
→ Takes O(n2) time
→ Is optimal in worst case

• Challenge: Develop an output-sensitive algorithm
– Runtime depends on size k of the output
– Here: 0 ≤ k ≤ c n2  , where c is a constant
– Our algorithm will have runtime: O( (n+k) log n) 
– Best possible runtime: O( n log n + k)        
→ O(n2) in worst case, but better in general

n
2
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Complexity

• Why is runtime O( n log n + k) optimal?
• The element uniqueness problem requires Ω(n log n) time 

in algebraic decision tree model of computation (Ben-Or ’83)
• Element uniqueness: Given n real numbers, are all of them 

distinct?
• Solve element uniqueness using line segment 

intersection:
– Take n numbers, convert into vertical line segments. There is an 

intersection iff there are duplicate numbers.
– If we could solve line segment intersection in o(n log n) time, i.e., 

strictly faster than Θ(n log n), then element uniqueness could be 
solved faster. Contradiction.
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Intersection of two line segments

• Two line segments ab and cd
• Write in terms of convex combinations:

p(s) = (1-s) a + s b  for 0 ≤ s ≤ 1
q(t) = (1-t) c + t d  for 0 ≤ t ≤ 1
Intersection if p(s)=q(t)

⇒Equation system 
(1-s) ax + s bx = (1-t) cx + t dx
(1-s) ay + s by = (1-t) cy + t dy

• Solve for s and t. In division, if divisor = 0 then line segments 
are parallel (or collinear). Otherwise get rational numbers for s
and t. Either use floating point arithmetic or exact arithmetic.
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Plane sweep 
algorithm

• Cleanliness property:
– All intersections to the left of sweep line l have been 

reported
• Sweep line status:

– Store segments that intersect the sweep line l, ordered along 
the intersection with l .

• Events:
– Points in time when sweep line status changes 

combinatorially (i.e., the order of segments intersecting l 
changes)

→ Endpoints of segments (insert in beginning)
→ Intersection points (compute on the fly during plane sweep)
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General position

Assume that “nasty” special cases don’t happen:
– No line segment is vertical
– Two segments intersect in at most one point
– No three segments intersect in a common point
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Event Queue

• Need to keep events sorted:
– Lexicographic order (first by x-coordinate, and if two events 

have same x-coordinate then by y-coordinate)
• Need to be able to remove next point, and insert new 

points in O(log n) time
• Need to make sure not to process same event twice
⇒ Use a priority queue (heap), and possibly extract 

multiples
⇒ Or, use balanced binary search tree 



9/1/10 CS 6463: AT Computational Geometry 19

Sweep Line Status
• Store segments that intersect the sweep line l, ordered along the 

intersection with l .
• Need to insert, delete, and find adjacent neighbor in O(log n) time
• Use balanced binary search tree, storing the order in which 

segments intersect l in leaves

b
c

de

c
b
e
d
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Event Handling
1. Left segment endpoint

– Add segment to sweep line status
– Test adjacent segments on sweep line l for intersection with new 

segment (see Lemma)
– Add new intersection points to event queue

a

b
c

de

c
b
d

c
b
e
d
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Event Handling
2. Intersection point

– Report new intersection point
– Two segments change order along l

→ Test new adjacent segments for new intersection points (to 
insert into event queue)

a

b
c

de

c
e
b
d

c
b
e
d

Note: “new” intersection 
might have been already 
detected earlier.
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Event Handling
3. Right segment endpoint

– Delete segment from sweep line status
– Two segments become adjacent. Check for intersection points (to 

insert in event queue)

a

b
c

de

e
c
b
d

e
c
d
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Intersection Lemma

• Lemma: Let s, s’ be two non-vertical segments whose 
interiors intersect in a single point p. Assume there is no 
third segment passing through p. Then there is an event 
point to the left of p where s and s’ become adjacent (and 
hence are tested for intersection).

• Proof: Consider placement of sweep line infinitesimally 
left of p. s and s’ are adjacent along sweep line. Hence 
there must have been a previous event point where s and 
s’ become adjacent.

p
s

s’
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Runtime

• Sweep line status updates: O(log n)
• Event queue operations: O(log n), as the total 

number of stored events is ≤ 2n + k, and each 
operation takes time 
O(log(2n+k)) = O(log n2) = O(log n)

• There are O(n+k) events. Hence the total runtime 
is O((n+k) log n)

k = O(n2)


