CS 6463: AT Computational Geometry
Fall 2010

/ .

— —

Plane Sweep Algorithms

and Segment Intersection
Carola Wenk

9/1/10 CS 6463: AT Computational Geometry

Closest Pair

* Problem: Given PCR?, |P|=n, find the distance
between the closest pair in P

9/1/10 CS 6463: AT Computational Geometry

Plane Sweep: An Algorithm
Design Technique

« Simulate sweeping a vertical line from left to right across the plane.

* Maintain cleanliness property: At any point in time, to the left of sweep
line everything is clean, 1.e., properly processed.

* Sweep line status: Store information along sweep line
* Events: Discrete points in time when sweep line status needs to be
updated

0

9/1/10 CS 6463: AT Computational Geometry 3

Plane Sweep: An Algorithm
Design Technique

« Simulate sweeping a vertical line from left to right across the plane.

* Maintain cleanliness property: At any point in time, to the left of sweep
line everything is clean, 1.e., properly processed.

* Sweep line status: Store information along sweep line

* Events: Discrete points in time when sweep line status needs to be
updated

Algorithm Generic Plane Sweep:

Initialize sweep line status S at time x=-o0

Store 1nitial events in event queue (O, a priority queue ordered by x-coordinate
while O # &

e = Q.extractMin();

Update sweep line status
Discover new upcoming events and insert them into O

9/1/10 CS 6463: AT Computational Geometry 4

Algorithm Generic_Plane_Sweep:

Initialize sweep line status S at time x=-o
a n e S ‘ ‘ e ep O r Store initial events in event queue O, a priority queue ordered by x-coordinate

while O + @

Closest Pair 7 Qautind;

Update sweep line status
Discover new upcoming events and insert them into O

* Problem: Given PCR?, |P|=n, find the distance of
the closest pair in P
* Sweep line status:

— Store current distance A mt pair of points to the
left of sweep line

Cleanliness property

— Store points 1n A-strip left of sweep line
— Store pointer to leftmost point in strip
* Events: All points in . No new events will be

added during the sweep.
— Presort P by x-coordinate.

9/1/10 CS 6463: AT Computational Geometry 5

Algorithm Generic_Plane_ Sweep:

Initialize sweep line status S at time x=-o
a n e SW e ep O r Store initial events in event queue O, a priority queue ordered by x-coordinate

while O + @

Closest Pair, 11 i

Update sweep line status
Discover new upcoming events and insert them into O

O(nlogn) * Presort P by x-coordinate
* How to store points in A-strip?

— Store points in A-strip left of sweep line in a balanced binary search tree,
ordered by y-coordinate
— Add point, delete point, and search in O(log ») time

 Event handling:
— New event: Sweep line advances to point p e P

— Update sweep line status:
» Delete points outside A-strip from search tree by using previous leftmost point in

' d x-order on P
O(n log n) total strip an . : ,
(g) » Compute candidate points that may have distance < A from p:
— Perform a search in the search tree to find points in A—strip whose y-
O(n log n+6n) total coordinates are at most A away from p.y.
— A x 2A box

— Because of the cleanliness property each pair of these points has distance <A.
— A A x 2A box can contain at most 6 such points. ¢ d

O(6n) total Check distance of these points to p, and possibly update A LA
— No new events necessary to discover

*——9-
Total runtime: O(n log n) F A
9/1/10 CS 6463: AT Computational Geometry ?) 6

Balanced Binary Search Tree
-- a bit different

»
® 9

Jd o Jd L

Ho OmO OB

A [T S [T Y

key|x] 1s the maximum key of any leaf in the left subtree of x.

9/1/10 CS 6463: AT Computational Geometry

Balanced Binary Search Tree

-- a bit different
Q
/< xi 5> X\
8 4,

W s
{) o iy b ay B,
A [T S [T Y

key|x] 1s the maximum key of any leaf in the left subtree of x.

9/1/10 CS 6463: AT Computational Geometry

Balanced Binary Search Tree

-- a bit different

<€ >

RANGE-QUERY([7, 41])

9/1/10 CS 6463: AT Computational Geometry 9

Plane Sweep: An Algorithm
Design Technique

* Plane sweep algorithms (also called sweep
line algorithms) are a special kind of
incremental algorithms

» Their correctness follows inductively by
maintaining the cleanliness property

* Common runtimes 1n the plane are O(n log n):
— n events are processed
— Update of sweep line status takes O(log n)
— Update of event queue: O(log n) per event

9/1/10 CS 6463: AT Computational Geometry 10

Geometric Intersections

* Important and basic problem in Computational
Geometry

* Solid modeling: Build shapes by applying set
operations (intersection, union).

 Robotics: Collision detection and avoidance

* Geographic information systems: Overlay two
subdivisions (e.g., road network and river
network)

« Computer graphics: Ray shooting to render scenes

9/1/10 CS 6463: AT Computational Geometry 11

Line Segment Intersection

* Input: A set S={s,, ..., s,} of (closed) line
segments in R’

* Output: All intersection points between segments
in S

9/1/10 CS 6463: AT Computational Geometry 12

Line Segment Intersection

* 1 line segments can intersect as few as 0 and as many as
njy__ 9) .
[2]—O(n) times
* Simple algorithm: Try out all pairs of line segments
— Takes O(n?) time

— s optimal 1n worst case

« Challenge: Develop an output-sensitive algorithm
— Runtime depends on size k& of the output
— Here: 0 <k<cn?> ,where cisa constant
— OQOur algorithm will have runtime: O((n+k) log n)

— Best possible runtime: O(n log n + k)
— O(n?) in worst case, but better in general

9/1/10 CS 6463: AT Computational Geometry

13

Complexity

Why is runtime O(n log n + k) optimal?

The element uniqueness problem requires ()(n log 1) time
in algebraic decision tree model of computation (Ben-Or *83)

Element uniqueness: Given 7 real numbers, are all of them
distinct?

Solve element uniqueness using line segment
Infersection:

— Take n numbers, convert into vertical line segments. There is an
intersection 1ff there are duplicate numbers.

— If we could solve line segment intersection in o(z log ») time, i.e.,
strictly faster than ®(n log 1), then element uniqueness could be
solved faster. Contradiction.

9/1/10 CS 6463: AT Computational Geometry 14

Intersection of two line segments

* Two line segments ab and cd

* Write in terms of convex combinations:
ps)=(1-s)a+sb for0< s<1
q(t)=(1-f)c+td for0< <1
Intersection if p(s)=g(1)

— Equation system

(1-s)a,+sb.=(1-t)c, +1td,
(I-s)a,+sb,=(-t)c,+1d,

* Solve for s and 7. In division, if divisor = 0 then line segments
are parallel (or collinear). Otherwise get rational numbers for s
and 7. Either use floating point arithmetic or exact arithmetic.

9/1/10 CS 6463: AT Computational Geometry 15

Algorithm Generic_Plane_Sweep:
Initialize sweep line status S at time x=-o
a n e SW e ep Store initial events in event queue O, a priority queue ordered by x-coordinate
while O + @
[] .
algorithm i

Update sweep line status
Discover new upcoming events and insert them into O

* Cleanliness property:
— All intersections to the left of sweep line / have been
reported
* Sweep line status:
— Store segments that intersect the sweep line /, ordered along
the intersection with /.
* Events:

— Points 1in time when sweep line status changes
combinatorially (1.e., the order of segments intersecting /
changes)

— Endpoints of segments (insert in beginning)

— Intersection points (compute on the fly during plane sweep)
9/1/10 CS 6463: AT Computational Geometry 16

General position

Assume that “nasty” special cases don’t happen:
— No line segment 1s vertical
— Two segments intersect 1n at most one point
— No three segments intersect in a common point

9/1/10 CS 6463: AT Computational Geometry 17

Event Queue

* Need to keep events sorted:

— Lexicographic order (first by x-coordinate, and if two events
have same x-coordinate then by y-coordinate)

* Need to be able to remove next point, and insert new
points 1n O(log n) time
* Need to make sure not to process same event twice

—> Use a priority queue (heap), and possibly extract
multiples

—> Or, use balanced binary search tree

9/1/10 CS 6463: AT Computational Geometry 18

Sweep Line Status

Store segments that intersect the sweep line /, ordered along the
intersection with / .

Need to isert, delete, and find adjacent neighbor in O(log n) time

Use balanced binary search tree, storing the order in which
segments intersect / in leaves

b [.

9/1/10 CS 6463: AT Computational Geometry 19

Event Handling

1.

Left segment endpoint

— Add segment to sweep line status
— Test adjacent segments on sweep line / for intersection with new

segment (see Lemma)

— Add new intersection points to event queue

9/1/10

b [.
“/ } d

—

(-
cc

bb
de
d

CS 6463: AT Computational Geometry 20

Event Handling

2. Intersection point
— Report new intersection point

— Two segments change order along |
— Test new adjacent segments for new intersection points (to
insert into event queue)

b [.
a/ e g

.// 29 5
c ¢ Note: “new” 1ntersection
b e might have been already
2, Z detected earlier.

9/1/10 CS 6463: AT Computational Geometry 21

Event Handling

3. Right segment endpoint
— Delete segment from sweep line status

Two segments become adjacent. Check for intersection points (to
insert in event queue)

a/‘ / T/
—

ee
cc

bd
d

CS 6463: AT Computational Geometry 22

9/1/10

Intersection Lemma

 Lemma: Let s, s be two non-vertical segments whose
interiors intersect in a single point p. Assume there 1s no
third segment passing through p. Then there 1s an event
point to the left of p where s and s’ become adjacent (and
hence are tested for intersection).

* Proof: Consider placement of sweep line infinitesimally
left of p. s and s are adjacent along sweep line. Hence
there must have been a previous event point where s and

s’ become adjacent.
S

-

9/1/10 CS 6463: AT Computational Geometry 23

Runtime

* Sweep line status updates: O(log n)

* Event queue operations: O(log 7), as the total
number of stored events 1s < 2n + k, and each
operation takes time

O(log(2n+k)) = O(log n?) = O(log n)

k= 0(n?) |

» There are O(n+k) events. Hence the total runtime
i1s O((n+k) log n)

9/1/10 CS 6463: AT Computational Geometry

24

