CS 6463 -- Fall 2010

CLIFFPFORD STHREIN

Range Searching and Windowing
Carola Wenk

10/20/10 CS 6463 AT: Computational Geometry

T

~

; ::;‘ Orthogonal range searching

1\\‘

Input: » points in d dimensions
* E.g., representing a database of » records
each with ¢ numeric fields

Query: Axis-aligned box (in 2D, a rectangle)
» Report on the points inside the box:
* Are there any points? .
* How many are there?

» List the points. . o

10/20/10 CS 6463 AT: Computational Geometry

_fcﬂor\(ifm&s .
“ <" Orthogonal range searching

WY e

Input: » points in d dimensions

Query: Axis-aligned box (in 2D, a rectangle)
» Report on the points inside the box

Goal: Preprocess points into a data structure

to support fast queries
* Primary goal: Static data structure °

* In 1D, we will also obtain a)
dynamic data structure * .

supporting insert and delete L)

10/20/10 CS 6463 AT: Computational Geometry

<" 1D range searching

\ _

In 1D, the query 1s an interval:
*—0© ® o—©

First solution:
* Sort the points and store them 1n an array
* Solve query by binary search on endpoints.
 Obtain a static structure that can list
k answers 1n a query 1n O(k + log n) time.

Goal: Obtain a dynamic structure that can list
i answers 1n a query 1n O(k + log n) time.

10/20/10 CS 6463 AT: Computational Geometry

ALGORITHMS

Ty —

-
~

~ o~ 1D range searching

In 1D, the query 1s an interval:
*—0© ® o—©

New solution that extends to higher dimensions:
» Balanced binary search tree
* New organization principle:
Store points 1n the /eaves of the tree.
* Internal nodes store copies of the leaves
to satisfy binary search property:
* Node x stores 1n key[x]| the maximum
key of any leaf in the left subtree of x.

10/20/10 CS 6463 AT: Computational Geometry

T

“* Example of a 1D range tree
(.
(_ (.
(- [(_ [

1 ‘ ‘ 17 ‘ 43 ‘

6|8 ||12||14 2635|4142 59|61

key|x] 1s the maximum key of any leaf in the left subtree of x.

10/20/10 6

CS 6463 AT: Computational Geometry

ALGORITHMS

———

~ " Example of a 1D range tree

@ @ <X\/>X
(1 14, (35, 43,
1 6 @ 17 @ 43 @

6|8 ||12||14 2635|4142 59|61

key[x] 1s the maximum key of any leaf in the left subtree of x.

10/20/10 7

CS 6463 AT: Computational Geometry

ALGORITHMS

———

:l?~1§$ Example of a 1D range query

26§ (1) 14 (59

26/ 35 141 42] |59 |61

RANGE-QUERY(|7, 41])

10/20/10 CS 6463 AT: Computational Geometr

ALGORITHMS

ey, General 1D range query

. root

split node .

<€ >
CS 6463 AT: Computational Geometry

10/20/10

ALGORITHMS

W Pseudocode, part 1:
~**" Find the split node

1D-RANGE-QUERY(7, [x,, x,])
w <— 100t| 7]
while w 1s not a leaf and (x, < key[w] or key[w] <Xx,)
do if x, < key|w]
then w < lefi|w]
else w < right[w]
// ' w 1s now the split node
[traverse left and right from w and report relevant subtrees]

N

10/20/10 CS 6463 AT: Computational Geometry

10

\ 4

ALGORITHMS

Pseudocode, part 2: Traverse
«7 Jeft and right from split node

1D-RANGE-QUERY(7, [x,, x,])
[find the split node]
// ' w 1s now the split node
if w 1s a leaf
then output the leaf w if x, < key[w] < x,

else v < lefi|w] // Left traversal
while v 1s not a leaf
do if x, < key[v]
then output the subtree rooted at right|v]
v « left[v]

else v < right[v]
output the leaf v if x, < key[v] < x,
[symmetrically for right traversal]

N
\ 4

10/20/10 11

CS 6463 AT: Computational Geometry

AAAAAAAAAA

- Analys1s of 1D-RANGE-QUERY

Query time: Answer to range query represented
by O(log n) subtrees found in O(log) time.
Thus:
* Can test for points 1n interval in O(log n) time.
* Can report all & points 1n interval 1n
O(k + log n) time.
 Can count points 1n interval in
O(log n) time

Space: O(n)
Preprocessing time: O(n log n)

N
\

10/20/10 CS 6463 AT: Computational Geometry 12

ALGORITHMS

" 2D range trees

"y

10/20/10 13

CS 6463 AT: Computational Geometry

ey 2D range trees

"y

Store a primary 1D range tree for all the points
based on x-coordinate.

Thus 1n O(log n) time we can find O(log ») subtrees
representing the points with proper x-coordinate.
How to restrict to points with proper y-coordinate?

e <

10/20/10 CS 6463 AT: Computational Geometry

v

14

,:Lcorii'T'HMs'
“<" 2D range trees M

Idea In primary 1D range tree of x-coordinate,
every node stores a secondary 1D range tree
based on y-coordinate for all points in the subtree
of the node. Recursively search within each.

A

CS 6463 AT: Computational &eometry 15

10/20/10

ALGORITHMS

wa——

“5* 2D range tree example

"y

Secondary trees

|IIII|’

IIII|IIII|\

W e B Ee

Primary tree

10/20/10 CS 6463 AT: Computational Geometry 16

ALGORITHMS

“ <" Analysis of 2D range trees

Query time: In O(log? n) = O((log n)?) time, we can
represent answer to range query by O(log” n) subtrees.
Total cost for reporting & points: O(k + (log n)?).

Space: The secondary trees at each level of the
primary tree together store a copy of the points.
Also, each point 1s present in each secondary

tree along the path from the leaf to the root.
Either way, we obtain that the space 1s O(n log n).

Preprocessing time: O(n log n)

10/20/10 CS 6463 AT: Computational Geometry 17

AAAAAAAAAA

dimensional range trees

Each node of the secondary
y-structure stores a tertiary
z-structure representing the points in the subtree

rooted at the node, etc. (g,ve one o i ue
fractional cascading

Query time: O(k + log? n) to report k points.
Space: O(n log?—! n)
Preprocessing time: O(n log? ! n)

10/20/10 CS 6463 AT: Computational Geometry 18

AAAAAAAAAA

v Search in Subsets

leen: Two sorted arrays A4, and 4, with 4,4

A query imterval [/,7]
Task: Reportall elementsein 4, and 4 with/<e<r
Idea: Add pointers from 4 to 4,:

— For each a4 add a pointer to the

smallest element be A4, with b=a
Query: Find /e A, follow pointer to 4,. Both in 4 and 4,
sequentially output all elements 1n [/,7].

Query: 413110 19]23 30 (37|59 |62 80 |90

[15,40] ﬁ&‘\l‘/‘/ ~
4,10

19130 62|30

Runtime: O((logn + k) + (1 + k)) = O(log n + k))

10/20/10 CS 6463 AT: Computational Geometry 19

“ <~ Search in Subsets (cont.)

Given: Three sorted arrays A, A,, and 4,
with 4, A4 and 4,4

Query: 4 |3]10[19]23 303759 |62 80 |90
[15400 [7 —2= ———
A,]10/19]30 62/80] 4,| 3]23]3762/90

Runtime: O((log n + k) + (1+k) + (1+k)) = O(log n + k))

Range trees: /7\
e
\ A A Y, UY,
.Y, Y,

/N

X

10/20/10 CS 6463 AT: Computational Geometry 20

ALGORITHMS

m Fractional Cascading:
ayered Range Tree "'z 74

“‘ ‘ f

=

Replace 2D range tree
with a layered range
tree, using sorted

. (2,19) (7,10) (12,3) (17,62) (21,49) (41,95) (58,59) (93,70)
arrays and pOlIltCI'S (5,80) (8,37) (15,99) (33,30) (52,23) (67,89)
instead of the x

M[3 i10[19[23‘[30|37|49]59iezhﬂsﬂjl%]QJ

secondary range trees. LT

/ /’

Preprocessing:
O(n log n) o]

Query: ﬁdﬂ 110_;.
O(logn+k) T Tr& i

vy

Y “vi
lj;% 80] [10][37] ¥)99 L?JH@ |_35_] 23
10/20/10 T YY ¥V ¥V ¥vY ¥y

AAAAAAAAAA

d—dlmensmnal range trees

\\ ﬁ:..— R

Query time: O(k + log®! n) to report k points,
uses fractional cascading in the
last dimension

Space: O(n log?—! n)

Preprocessing time: O(n log? ! n)

Best data structure to date:

Query time: O(k + log?~! n) to report k points.
Space: O(n (log n / log log n)?—1)
Preprocessing time: O(7 log? ! n)

10/20/10 CS 6463 AT: Computational Geometry 22

AAAAAAAAAA

| : ”I!HI: ° °

<" Windowing

Input: A set S of » line segments 1n the plane
Query: Report all segments 1n S that
intersect a given query window

Subproblem: Process a set of intervals on the line
into a data structure which supports queries of the
type: Report all intervals that contain a query point.

10/20/10 CS 6463 AT: Computational Geometry 23

~ 4" Interval trees

Goal: To maintain a dynamic set of intervals,
such as time intervals.

/iz 17, 10]

low[i] =T == 10 = highl|i]
5e *]] |7 &=—=19
4 e * 8 15 * |8 2223

Query: For a given query interval 7, find an
interval 1n the set that overlaps i.

10/20/10 24

CS 6463 AT: Computational Geometry

AAAAAAAAAA

“ <" Following the methodology

[. Choose an underlying data structure.
» Red-black tree keyed on low (left) endpoint.

2. Determine additional information to be
stored in the data structure.

* Store 1n each node x the interval in¢[x]
corresponding to the key, as well as the
largest value m[x]| of all right interval
endpoints stored in the subtree rooted at x.

int

N

CS 6463 AT: Computational Geometry

10/20/10 25

‘ saRTRR
“ 4+ Example interval tree ~ “

1\\‘
low[z] 7 o= 10 = highli]
Se * 11 17 e—=19
Je—————3 |]56——— 8 22e—23

" high[int[x]]
m[x] = max < m|left[x]]
m|right|x]]

26

10/20/10 CS 6463 AT: Computational Geometry

ALGORITHMS

“ " Modifying operations

1\\

3 Verzﬁ/ that this information can be maintained
for modifying operations.

* INSERT: Fix m’s on the way down.
* Rotations — Fixup = O(1) time per rotation:

(11,13 (6.20\

30 30
6,20 11,15
/‘\%\3_0/%_\ W

Total INSERT time = O(log n); DELETE similar.

10/20/10 27

CS 6463 AT: Computational Geometry

AAAAAAAAAA

«* New operations

1\\ —— R

4, Develop new dynamic-set operations that use
the information.

INTERVAL-SEARCH(/)
X < root
while x = NIL and (low[i]| > high|int|x]]
or low[int[x]] > high[i])
do =i and int[x]| don’t overlap
if /eft|x] # NIL and low|[i]| < m[left[x]]
then x < /eff[x]
else x < right|x]
return x

10/20/10 28

CS 6463 AT: Computational Geometry

;::Go‘f(i'THMS;
S Example 1: IntervaL-Searcu([14,16])

1\\\ o

low|i] =7 == 10 = highli]

ie *11 [Fe——=s]8
]5e——=]18 2223
[4e=—216

while x # NIL and (low[i] = high|int|x]]
or low[int|x]] > high[i])
do >/ and inf[x] don’t overlap
if /left[x] # NIL and low[i] < m|left|x]]
then x « lefi[x]

Y <— 10Ot else x <« right[x]

[14,16] and [17,19] don’t overlap
14 < 18 = x < left[x]

10/20/10 29

CS 6463 AT: Computational Geometry

;::Go‘f(i'THMS;
S Example 1: IntervaL-Searcu([14,16])

1\\\ o

low|i] =7 == 10 = highli]

ie *11 [Fe——=s]8
]5e——=]18 2223
[4e=—216

while x # NIL and (low[i] = high|int|x]]
or low[int|x]] > high[i])
do >/ and inf[x] don’t overlap
if /left[x] # NIL and low[i] < m|left|x]]
then x « lefi[x]
else x <« right[x]

[14,16] and [5,11] don’t overlap
14 > 8 = x < right|[x]

10/20/10 30

CS 6463 AT: Computational Geometry

| :ci(rjnms
S Example 1: INTERVAL-SEARCH(| 14,16])

1\\\ o

low|i] =7 == 10 = highli]

ie *11 [Fe——=s]8
]5e——=]18 2223
14216

while x # NIL and (low[i] = high|int|x]]
or low[int|x]] > high[i])
do >/ and inf[x] don’t overlap
if /left[x] # NIL and low[i] < m|left|x]]
then x « lefi[x]
else x <« right[x]

[14,16] and [15,18] overlap
return [15,18]

10/20/10 31

CS 6463 AT: Computational Geometry

;::Go‘f(i'THMS;
S Example 2: INntervaL-SEarcu([12,14])

1\\\ o

low|i] =7 == 10 = highli]

ie *11 [Fe——=s]8
]5e——=]18 2223
12 =14

while x # NIL and (low[i] = high|int|x]]
or low[int|x]] > high[i])
do >/ and inf[x] don’t overlap
if /left[x] # NIL and low[i] < m|left|x]]
then x « lefi[x]

Y <— 10Ot else x <« right[x]

[12,14] and [17,19] don’t overlap
12 <18 = x < left[x]

10/20/10 32

CS 6463 AT: Computational Geometry

;::Go‘f(i'THMS;
S Example 2: INntervaL-SEarcu([12,14])

1\\\ o

low|i] =7 == 10 = highli]

ie *11 [Fe——=s]8
]5e——=]18 2223
12 =14

while x # NIL and (low[i] = high|int|x]]
or low[int|x]] > high[i])
do >/ and inf[x] don’t overlap
if /left[x] # NIL and low[i] < m|left|x]]
then x « lefi[x]
else x <« right[x]

[12,14] and [5,11] don’t overlap
12 > 8 = x < right|[x]

10/20/10 33

CS 6463 AT: Computational Geometry

;::Go‘f(i'THMS;
S Example 2: INntervaL-SEarcu([12,14])

1\\\ o

low|i] =7 == 10 = highli]

ie *11 [Fe——=s]8
]5e——=]18 2223
12 =14

while x # NIL and (low[i] = high|int|x]]
or low[int|x]] > high[i])
do >/ and inf[x] don’t overlap
if /left[x] # NIL and low[i] < m|left|x]]
then x « lefi[x]
else x <« right[x]

[12,14] and [15,18] don’t overlap
12 > 10 = x < right|x]

10/20/10 34

CS 6463 AT: Computational Geometry

ALGORITHMS

s Example 22 INTERVAL-SEARCH([12,14])

"y

low|i] =7 == 10 = highli]

ie *11 [Fe——=s]8
]5e——=]18 2223
12 =14

while x # NIL and (low[i] = high|int|x]]
or low[int|x]] > high[i])
do >/ and inf[x] don’t overlap
if /left[x] # NIL and low[i] < m|left|x]]
then x « lefi[x]
else x <« right[x]

X

x = NIL = no interval that
overlaps [12,14] exists

10/20/10 35

CS 6463 AT: Computational Geometry

:cofaﬁ'nhhs' .
St Analysis

Time = O(/) = O(log n), since INTERVAL-
SEARCH does constant work at each level as it
follows a simple path down the tree.

List all overlapping intervals:
* Search, list, delete, repeat.

* Insert them all again at the end.
Time = O(k log n), where k 1s the total number
of overlapping intervals.

This 1s an output-sensitive bound.
Best algorithm to date: O(k + log n).

10/20/10 CS 6463 AT: Computational Geometry

36

“ o~ Correctness

Theorem. Let L be the set of intervals 1n the
left subtree of node x, and let R be the set of
intervals 1n x’s right subtree.

» If the search goes right, then
{i"e L:i"overlapsi } = .
* If the search goes left, then
{i"e L:i"overlapsi } =
= {i' e R:i"overlapsi } = D.

In other words, it’s always safe to take only 1
of the 2 children: we’ll either find something,
or nothing was to be found.

10/20/10 CS 6463 AT: Computational Geometry 37

“ o~ Correctness proof

Proof. Suppose first that the search goes right.
o If /eft[x] = NIL, then we’re done, since L = .

e Otherwise, the code dictates that we must have
low|i] > m|left|x]]. The value m|leff|x]]
corresponds to the right endpoint of some
interval ; € L, and no other interval in L can
have a larger right endpoint than /zig/(;).

l
high(j) = milefilx] / = low(i)
» Therefore, {i' € L : i’ overlapsi } = .

10/20/10 CS 6463 AT: Computational Geometry 38

“«" Proof (continued)

Suppose that the search goes left, and assume that
{i"e L:i"overlapsi } = .

* Then, the code dictates that low|i]| < m[left[x]] =
highl j| for some j € L.

* Since j € L, 1t does not overlap i, and hence
high|i] < low] j].

* But, the binary-search-tree property implies that
forall i" € R, we have low| j]| < low[i'].

*Butthen {i" € R: i’ overlapsi } = .

l J

® ® ® . ®

l

10/20/10 CS 6463 AT: Computational Geometry 39

