CS 6463: AT Computational Geometry Fall 2010

Convex Hulls
Carola Wenk

Convex Hull Problem

- Given a set of pins on a pinboard and a rubber band around them.
 - How does the rubber band look when it snaps tight?
- The convex hull of a point set is one of the simplest shape approximations for a set of points.

Convexity

• A set $C \subseteq \mathbb{R}^2$ is *convex* if for all two points $p,q \in C$ the line segment pq is fully contained in C.

non-convex

Convex Hull

• The convex hull CH(P) of a point set $P \subseteq \mathbb{R}^2$ is the smallest convex set $C \supseteq P$. In other words $CH(P) = \bigcap_{C \supseteq P} C$.

Convex Hull

- **Observation:** CH(P) is the unique convex polygon whose vertices are points of P and which contains all points of P.
- We represent the convex hull as the sequence of points on the convex hull polygon (the boundary of the convex hull), in counter-clockwise order.

A First Try

```
Algorithm SLOW_CH(P):

/* CH(P) = Intersection of all half-planes that are defined by the directed line through ordered pairs of points in P and that have all remaining points of P on their left */

Input: Point set P ⊆ R²

Output: A list L of vertices describing the CH(P) in counter-clockwise order

E:=∅

for all (p,q)∈P×P with p≠q // ordered pair

valid := true

for all r∈P, r≠p and r≠q

if r lies to the right of directed line through p and q // takes constant time

valid := false

if valid then

E:=E∪pq // directed edge

Construct from E sorted list L of vertices of CH(P) in counter-clockwise order
```

- Runtime: $O(n^3)$, where n = |P|
- How to test that a point lies to the left?

Orientation Test / Halfplane Test

• positive orientation (counter-clockwise)

 negative orientation (clockwise)

- zero orientation
- r lies on the line pq

- r lies to the left of pq
- r lies to the right of pq

• Orient(p,q,r) = sign det
$$\begin{bmatrix} 1 & p_x & p_y \\ 1 & q_x & q_y \\ 1 & r_x & r_y \end{bmatrix}$$
, where $p = (p_x, p_y)$

Can be computed in constant time

Convex Hull: Divide & Conquer

- Preprocessing: sort the points by xcoordinate
- Divide the set of points into two sets A and B:
 - A contains the left $\lfloor n/2 \rfloor$ points,
 - B contains the right $\lceil n/2 \rceil$ points
- Recursively compute the convex hull of **A**
- Recursively compute the convex hull of B
- Merge the two convex hulls

Merging

- Find upper and lower tangent
- With those tangents the convex hull of $A \cup B$ can be computed from the convex hulls of A and the convex hull of B in O(n) linear time

Finding the lower tangent

```
a = rightmost point of A
                                                            4=b
b = leftmost point of B
while T=ab not lower tangent to both
      convex hulls of A and B do {
                                                    a=2
    while T not lower tangent to
     convex hull of A do {
       a=a-1
    while T not lower tangent to
      convex hull of B do {
       b = b + 1
                                   left turn
                                                            right turn
     check with
   orientation test
    8/25/10
                          CS 6463: AT Computational Geomet
                                                                      10
```

Convex Hull: Runtime

 Preprocessing: sort the points by xcoordinate

O(n log n) just once

Divide the set of points into two sets A and B:

O(1)

- A contains the left $\lfloor n/2 \rfloor$ points,
- B contains the right $\lceil n/2 \rceil$ points
- Recursively compute the convex hull of A

T(n/2)

•Recursively compute the convex hull of B

T(n/2)

Merge the two convex hulls

O(n)

Convex Hull: Runtime

• Runtime Recurrence:

$$T(n) = 2 T(n/2) + cn$$

• Solves to $T(n) = \Theta(n \log n)$

Recurrence (Just like merge sort recurrence)

- 1. Divide: Divide set of points in half.
- 2. Conquer: Recursively compute convex hulls of 2 halves.
- 3. Combine: Linear-time merge.

Recurrence (cont'd)

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1; \\ 2T(n/2) + \Theta(n) & \text{if } n > 1. \end{cases}$$

• How do we solve T(n)? I.e., how do we find out if it is O(n) or $O(n^2)$ or ...?

Solve
$$T(n) = 2T(n/2) + dn$$
, where $d > 0$ is constant.
$$T(n)$$

The divide-and-conquer design paradigm

1. Divide the problem (instance) into subproblems.

a subproblems, each of size n/b

- **2.** *Conquer* the subproblems by solving them recursively.
- 3. Combine subproblem solutions.

Runtime is f(n)

Master theorem

$$T(n) = a T(n/b) + f(n) ,$$

where $a \ge 1$, b > 1, and f is asymptotically positive.

CASE 1:
$$f(n) = O(n^{\log_b a - \varepsilon})$$

 $\Rightarrow T(n) = \Theta(n^{\log_b a})$.

CASE 2:
$$f(n) = \Theta(n^{\log_b a} \log^k n)$$

 $\Rightarrow T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$.

CASE 3:
$$f(n) = \Omega(n^{\log_b a + \varepsilon})$$
 and $af(n/b) \le cf(n)$
 $\Rightarrow T(n) = \Theta(f(n))$.

```
Convex hull: a = 2, b = 2 \implies n^{\log_b a} = n

\Rightarrow \text{CASE 2}(k = 0) \Rightarrow T(n) = \Theta(n \log n).
```