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Convex Hull Problem

• Given a set of pins on a pinboard

and a rubber band around them.

How does the rubber band look   
when it snaps tight?

• The convex hull of a point set is 
one of the simplest shape 
approximations for a set of points.
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Convexity

• A set C ⊆ R2 is convex if for all two points p,q∈C the line 
segment pq is fully contained in C.

convex non-convex
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Convex Hull

• The convex hull CH(P) of a point set P ⊆ R2 is the smallest 
convex set C ⊇ P. In other words CH(P) = ∩ C .

C ⊇ P
C convex

P
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Convex Hull

• Observation: CH(P) is the unique convex polygon whose 
vertices are points of P and which contains all points of P.
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• We represent the convex hull as the sequence of points on 
the convex hull polygon (the boundary of the convex hull), 
in counter-clockwise order.
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A First Try
Algorithm SLOW_CH(P):
/* CH(P) = Intersection of all half-planes that are defined by the directed line through 

ordered pairs of points in P and that have all remaining points of P on their left */  
Input: Point set P ⊆ R2

Output: A list L of vertices describing the CH(P) in counter-clockwise order
E:=∅
for all (p,q)∈P×P with p≠q   // ordered pair

valid := true
for all r∈P, r≠p and r≠q

if r lies to the right of directed line through p and q // takes constant time
valid := false

if valid then
E:=E∪pq // directed edge

Construct from E sorted list L of vertices of CH(P) in counter-clockwise order

• Runtime: O(n3) , where n = |P|
• How to test that a point lies to the left?
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Orientation Test / Halfplane Test

p
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r
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• positive orientation
(counter-clockwise)

• r lies to the left of pq

• negative orientation
(clockwise)

• r lies to the right of pq

r
q

p
• zero orientation
• r lies on the line pq

• Orient(p,q,r) = sign det  

• Can be computed in constant time

1 px py
1 qx qy
1 rx ry

,where p = (px,py)
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Convex Hull: Divide & Conquer
• Preprocessing: sort the points by x-
coordinate

• Divide the set of points into two 
sets A and B:

• A contains the left ⎣n/2⎦ points, 

• B contains the right ⎡n/2⎤ points 

•Recursively compute the convex 
hull of A

•Recursively compute the convex 
hull of B

• Merge the two convex hulls

A B
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Merging 
• Find upper and lower tangent

• With those tangents the convex hull 
of A∪B can be computed from the 
convex hulls of A and the convex hull 
of B in O(n) linear time

A B



8/25/10 CS 6463: AT Computational Geometry 10

check with 
orientation test

right turn
left turn

Finding the lower tangent 
a = rightmost point of A
b = leftmost point of B
while T=ab not lower tangent to both   

convex hulls of A and B do{
while T not lower tangent to 
convex hull of A do{

a=a-1
}
while T not lower tangent to 
convex hull of B do{
b=b+1

}
}
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Convex Hull: Runtime
• Preprocessing: sort the points by x-
coordinate

• Divide the set of points into two 
sets A and B:

• A contains the left ⎣n/2⎦ points, 

• B contains the right ⎡n/2⎤ points 

•Recursively compute the convex 
hull of A

•Recursively compute the convex 
hull of B

• Merge the two convex hulls

O(n log n)  just once

O(1)

T(n/2)

T(n/2)

O(n)
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Convex Hull: Runtime
• Runtime Recurrence:

T(n) = 2 T(n/2) + cn

• Solves to T(n) = Θ(n log n)
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Recurrence 
(Just like merge sort recurrence)

1. Divide: Divide set of points in half.
2. Conquer: Recursively compute convex 

hulls of 2 halves.
3. Combine: Linear-time merge.

T(n) = 2 T(n/2) + O(n)
# subproblems subproblem size work dividing 

and combining
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Recurrence (cont’d)

T(n) =
Θ(1) if n = 1;
2T(n/2) + Θ(n) if n > 1.

• How do we solve T(n)? I.e., how do we 
find out if it is O(n) or O(n2) or …?
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Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.
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Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

T(n)
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Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

T(n/2) T(n/2)

dn
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Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

T(n/4) T(n/4) T(n/4) T(n/4)

dn/2 dn/2
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Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

Θ(1)

…



8/25/10 CS 6463: AT Computational Geometry 20

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

Θ(1)

…

h = log n
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Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

Θ(1)

…

h = log n

dn
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Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

Θ(1)

…

h = log n

dn

dn
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Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

Θ(1)

…

h = log n

dn

dn

dn

…
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Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

Θ(1)

…

h = log n

dn

dn

dn

#leaves = n Θ(n)

…
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Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

Θ(1)

…

h = log n

dn

dn

dn

#leaves = n Θ(n)
Total Θ(n log n)

…
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The divide-and-conquer 
design paradigm

1. Divide the problem (instance) into 
subproblems.

a subproblems, each of size n/b
2. Conquer the subproblems by 

solving them recursively.
3. Combine subproblem solutions.

Runtime is f(n)
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Master theorem
T(n) = a T(n/b) + f (n)

CASE 1: f (n) = O(nlogba – ε)
⇒ T(n) = Θ(nlogba) .

CASE 2: f (n) = Θ(nlogba logkn)
⇒ T(n) = Θ(nlogba logk+1n) .

CASE 3: f (n) = Ω(nlogba + ε) and a f (n/b) ≤ c f (n) 
⇒ T(n) = Θ( f (n)) .

, 
where a ≥ 1, b > 1, and f is asymptotically positive.

Convex hull: a = 2, b = 2 ⇒ nlogba = n
⇒ CASE 2 (k = 0)  ⇒ T(n) = Θ(n log n) . 


