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Merge sort

MERGE-SORT A[1 . . n]
1. If n = 1, done.
2. Recursively sort A[ 1 . . n/2 ]

and A[ n/2+1 . . n ] .
3. “Merge” the 2 sorted lists.

Key subroutine: MERGE
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Merging two sorted arrays
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Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

1/19/10 CS 5633 Analysis of Algorithms 7

Merging two sorted arrays
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Merging two sorted arrays
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Merging two sorted arrays
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Merging two sorted arrays
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Merging two sorted arrays
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Merging two sorted arrays
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Merging two sorted arrays
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Merging two sorted arrays
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Merging two sorted arrays
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Time dn = Θ(n) to merge a total 
of n elements (linear time).

1/19/10 CS 5633 Analysis of Algorithms 16

Analyzing merge sort

MERGE-SORT A[1 . . n]
1. If n = 1, done.
2. Recursively sort A[ 1 . . n/2 ]

and A[ n/2+1 . . n ] .
3. “Merge” the 2 sorted lists

T(n)
d0
2T(n/2)

dn

Sloppiness: Should be T( n/2 ) + T( n/2 ) , 
but it turns out not to matter asymptotically.



5

1/19/10 CS 5633 Analysis of Algorithms 17

Recurrence for merge sort

T(n) =
d0 if n = 1;
2T(n/2) + dn if n > 1.

• Later we shall often omit stating the base 
case when T(n) = Θ(1) for sufficiently 
small n, but only when it has no effect on 
the asymptotic solution to the recurrence.

• But what does T(n) solve to? I.e., is it 
O(n) or O(n2) or O(n3) or …?
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The divide-and-conquer 
design paradigm

1. Divide the problem (instance) into 
subproblems of sizes that are  
fractions of the original problem size

2. Conquer the subproblems by 
solving them recursively.

3. Combine subproblem solutions.
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Example: merge sort

1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays.
3. Combine: Linear-time merge.

T(n) = 2 T(n/2) + Θ(n)

# subproblems
subproblem size

work dividing 
and combining
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Binary search

Example: Find 9

3 5 7 8 9 12 15

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.
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Binary search

Example: Find 9

3 5 7 8 9 12 15

Find an element in a sorted array:
1. Divide: Check middle element.
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3. Combine: Trivial.
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Binary search

Example: Find 9
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3. Combine: Trivial.
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Binary search

Example: Find 9

3 5 7 8 9 12 15

Find an element in a sorted array:
1. Divide: Check middle element.
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3. Combine: Trivial.
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Binary search

Example: Find 9

3 5 7 8 9 12 15

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.
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Binary search

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9

3 5 7 8 9 12 15
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Recurrence for binary search

T(n) = 1 T(n/2) + Θ(1)

# subproblems
subproblem size

work dividing 
and combining
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Recurrence for merge sort

T(n) =
Θ(1) if n = 1;
2T(n/2) + Θ(n) if n > 1.

• How do we solve T(n)? I.e., how do we 
find out if it is O(n) or O(n2) or …?
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Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.
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Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

T(n)
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Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

T(n/2) T(n/2)

dn
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Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

T(n/4) T(n/4) T(n/4) T(n/4)

dn/2 dn/2
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Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

Θ(1)
…
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Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

Θ(1)

…

h = log n
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Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.
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Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

Θ(1)

…

h = log n

dn

dn

1/19/10 CS 5633 Analysis of Algorithms 36

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

Θ(1)
…

h = log n

dn

dn

dn

…
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Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

Θ(1)

…

h = log n

dn

dn

dn

#leaves = n Θ(n)

…

1/19/10 CS 5633 Analysis of Algorithms 38

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

Θ(1)

…

h = log n

dn

dn

dn

#leaves = n Θ(n)
Total Θ(n log n)

…
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Conclusions

• Merge sort runs in Θ(n log n) time.
• Θ(n log n) grows more slowly than Θ(n2).
• Therefore, merge sort asymptotically beats 

insertion sort in the worst case.
• In practice, merge sort beats insertion sort 

for n > 30 or so. (Why not earlier?)
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Recursion-tree method

• A recursion tree models the costs (time) of a 
recursive execution of an algorithm.

• The recursion-tree method can be unreliable, 
just like any method that uses ellipses (…).

• It is good for generating guesses of what the 
runtime could be. 

But: Need to verify that the guess is right.
→ Induction (substitution method)
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Substitution method

1. Guess the form of the solution:
(e.g. using recursion trees, or expansion)

2. Verify by induction (inductive step).
3. Solve for O-constants n0 and c (base case of 

induction)

The most general method to solve a recurrence 
(prove O and Ω separately):
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CS 5633 -- Spring 2010

More Divide & Conquer
Carola Wenk

Slides courtesy of Charles Leiserson with small 
changes by Carola Wenk
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The divide-and-conquer 
design paradigm

1. Divide the problem (instance) into 
subproblems.

a subproblems, each of size n/b
2. Conquer the subproblems by 

solving them recursively.
3. Combine subproblem solutions.

Runtime is f(n)
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Example: merge sort
1. Divide: Trivial.
2. Conquer: Recursively sort a=2

subarrays of size n/2=n/b
3. Combine: Linear-time merge, runtime 

f(n)∈O(n)

T(n) = 2 T(n/2) + O(n)
# subproblems subproblem size work dividing 

and combining
T(n) = a T(n/b) + f(n)
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The master method

The master method applies to recurrences of 
the form

T(n) = a T(n/b) + f (n) , 
where a ≥ 1, b > 1, and f is asymptotically 
positive.
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Three common cases
Compare f (n) with nlogba:
1. f (n) = O(nlogba – ε) for some constant ε > 0.

• f (n) grows polynomially slower than nlogba

(by an nε factor).
Solution: T(n) = Θ(nlogba) .

2. f (n) = Θ(nlogba logkn) for some constant k ≥ 0.
• f (n) and nlogba grow at similar rates.
Solution: T(n) = Θ(nlogba logk+1n) .
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Three common cases (cont.)
Compare f (n) with nlogba:

3. f (n) = Ω(nlogba + ε) for some constant ε > 0.
• f (n) grows polynomially faster than nlogba (by 

an nε factor),
and f (n) satisfies the regularity condition that 
a f (n/b) ≤ c f (n) for some constant c < 1.
Solution: T(n) = Θ( f (n)) .
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Examples

Ex. T(n) = 4T(n/2) + sqrt(n)
a = 4, b = 2 ⇒ nlogba = n2; f (n) = sqrt(n).
CASE 1: f (n) = O(n2 – ε) for ε = 1.5.
∴ T(n) = Θ(n2).

Ex. T(n) = 4T(n/2) + n2

a = 4, b = 2 ⇒ nlogba = n2; f (n) = n2.
CASE 2: f (n) = Θ(n2log0n), that is, k = 0.
∴ T(n) = Θ(n2log n).
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Examples

Ex. T(n) = 4T(n/2) + n3

a = 4, b = 2 ⇒ nlogba = n2; f (n) = n3.
CASE 3: f (n) = Ω(n2 + ε) for ε = 1

and 4(n/2)3 ≤ cn3 (reg. cond.) for c = 1/2.
∴ T(n) = Θ(n3).

Ex. T(n) = 4T(n/2) + n2/logn
a = 4, b = 2 ⇒ nlogba = n2; f (n) = n2/logn.
Master method does not apply.  In particular, 
for every constant ε > 0, we have log n ∈ o(nε).



3

1/21/10 CS 5633 Analysis of Algorithms 9

Master theorem (summary)
T(n) = a T(n/b) + f (n)

CASE 1: f (n) = O(nlogba – ε)
⇒ T(n) = Θ(nlogba) .

CASE 2: f (n) = Θ(nlogba logkn)
⇒ T(n) = Θ(nlogba logk+1n) .

CASE 3: f (n) = Ω(nlogba + ε) and a f (n/b) ≤ c f (n) 
for some constant c < 1.

⇒ T(n) = Θ( f (n)) .
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Example: merge sort

1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays.
3. Combine: Linear-time merge.

T(n) = 2 T(n/2) + O(n)
# subproblems subproblem size work dividing 

and combining
nlogba = nlog22 = n1 = n ⇒ CASE 2 (k = 0)

⇒ T(n) = Θ(n log n) . 
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Recurrence for binary search

T(n) = 1 T(n/2) + Θ(1)

# subproblems
subproblem size

work dividing 
and combining

nlogba = nlog21 = n0 = 1 ⇒ CASE 2 (k = 0)
⇒ T(n) = Θ(log n) . 
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Powering a number

Problem: Compute a n, where n ∈ N.

a n =
a n/2 ⋅ a n/2 if n is even;
a (n–1)/2 ⋅ a (n–1)/2 ⋅ a if n is odd.

Divide-and-conquer algorithm: (recursive squaring)

T(n) = T(n/2) + Θ(1)  ⇒ T(n) = Θ(log n) . 

Naive algorithm: Θ(n).
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Fibonacci numbers
Recursive definition:

Fn =
0 if n = 0;

Fn–1 + Fn–2 if n ≥ 2.
1 if n = 1;

0 1 1 2 3 5 8 13 21 34 ...

Naive recursive algorithm: Ω(φ n)
(exponential time), where φ =
is the golden ratio.

2/)51( +
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Computing Fibonacci 
numbers

Naive recursive squaring:
Fn = φ n/ rounded to the nearest integer.5

• Recursive squaring: Θ(log n) time. 
• This method is unreliable, since floating-point 

arithmetic is prone to round-off errors.
Bottom-up (one-dimensional dynamic programming): 
• Compute F0, F1, F2, …, Fn in order, forming 

each number by summing the two previous.
• Running time: Θ(n). 
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Convex Hull

• Given a set of pins on a pinboard

• And a rubber band around them

• How does the rubber band look 
when it snaps tight?

• We represent convex hull as the 
sequence of points on the convex 
hull polygon, in counter-clockwise 
order.

0

2

1

3
4

6

5
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Convex Hull: Divide & Conquer
• Preprocessing: sort the points by x-
coordinate

• Divide the set of points into two 
sets A and B:

• A contains the left n/2 points, 

• B contains the right n/2 points 

•Recursively compute the convex 
hull of A

•Recursively compute the convex 
hull of B

• Merge the two convex hulls

A B
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Merging 
• Find upper and lower tangent

• With those tangents the convex hull 
of A∪B can be computed from the 
convex hulls of A and the convex hull 
of B in O(n) linear time

A B
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can be checked 
in constant time 

right turn or 
left turn?

Finding the lower tangent 
a = rightmost point of A
b = leftmost point of B
while T=ab not lower tangent to both   

convex hulls of A and B do{
while T not lower tangent to 
convex hull of A do{

a=a-1
}
while T not lower tangent to 
convex hull of B do{
b=b+1

}
}

A B
0

a=2

1

5

3

4

0

1

2

3

4=b

5

6
7
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Convex Hull: Runtime
• Preprocessing: sort the points by x-
coordinate

• Divide the set of points into two 
sets A and B:

• A contains the left n/2 points, 

• B contains the right n/2 points 

•Recursively compute the convex 
hull of A

•Recursively compute the convex 
hull of B

• Merge the two convex hulls

O(n log n)  just once

O(1)

T(n/2)

T(n/2)

O(n)
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Convex Hull: Runtime
• Runtime Recurrence:

T(n) = 2 T(n/2) + cn

• Solves to T(n) = Θ(n log n)
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Matrix multiplication
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Input: A = [aij], B = [bij].
Output: C = [cij] = A⋅B. i, j = 1, 2,… , n.
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Standard algorithm

for i ← 1 to n
do for j ← 1 to n

do cij ← 0
for k ← 1 to n

do cij ← cij + aik⋅ bkj

Running time = Θ(n3)
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Divide-and-conquer algorithm

n×n matrix = 2×2 matrix of (n/2)×(n/2) submatrices:
IDEA:






⋅




=





hg
fe

dc
ba

ut
sr

C = A ⋅ B
r = a·e+b·g
s = a·f+ b·h
t = c·e+d·g
u = c·f +d·h

8 recursive mults of (n/2)×(n/2) submatrices
4 adds of (n/2)×(n/2) submatrices
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Analysis of D&C algorithm

nlogba = nlog28 = n3 ⇒ CASE 1 ⇒ T(n) = Θ(n3). 

No better than the ordinary algorithm.

# submatrices
submatrix size

work adding 
submatrices

T(n) = 8 T(n/2) + Θ(n2)
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7 mults, 18 adds/subs.
Note: No reliance on 
commutativity of mult!

7 mults, 18 adds/subs.
Note: No reliance on 
commutativity of mult!

Strassen’s idea
• Multiply 2×2 matrices with only 7 recursive mults. 

P1 = a ⋅ ( f – h)
P2 = (a + b) ⋅ h
P3 = (c + d) ⋅ e
P4 = d ⋅ (g – e)
P5 = (a + d) ⋅ (e + h)
P6 = (b – d) ⋅ (g + h)
P7 = (a – c) ⋅ (e + f )

r = P5 + P4 – P2 + P6
s = P1 + P2
t = P3 + P4
u = P5 + P1 – P3 – P7
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Strassen’s idea
• Multiply 2×2 matrices with only 7 recursive mults. 

P1 = a ⋅ ( f – h)
P2 = (a + b) ⋅ h
P3 = (c + d) ⋅ e
P4 = d ⋅ (g – e)
P5 = (a + d) ⋅ (e + h)
P6 = (b – d) ⋅ (g + h)
P7 = (a – c) ⋅ (e + f )

r = P5 + P4 – P2 + P6
= (a + d) (e + h) 

+ d (g – e) – (a + b) h
+ (b – d) (g + h)

= ae + ah + de + dh 
+ dg –de – ah – bh
+ bg + bh – dg – dh

= ae + bg
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Strassen’s algorithm
1. Divide: Partition A and B into 

(n/2)×(n/2) submatrices.  Form P-terms 
to be multiplied using + and – .

2. Conquer: Perform 7 multiplications of 
(n/2)×(n/2) submatrices recursively.

3. Combine: Form C using + and – on 
(n/2)×(n/2) submatrices.

T(n) = 7 T(n/2) + Θ(n2)
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Analysis of Strassen
T(n) = 7 T(n/2) + Θ(n2)

nlogba = nlog27 ≈ n2.81 ⇒ CASE 1 ⇒ T(n) = Θ(nlog 7).

Best to date (of theoretical interest only): Θ(n2.376Λ).

The number 2.81 may not seem much smaller than 
3, but because the difference is in the exponent, the 
impact on running time is significant.  In fact, 
Strassen’s algorithm beats the ordinary algorithm 
on today’s machines for n ≥ 30 or so.
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Conclusion

• Divide and conquer is just one of several 
powerful techniques for algorithm design. 

• Divide-and-conquer algorithms can be 
analyzed using recurrences and the master 
method (so practice this math).

• Can lead to more efficient algorithms


