
1

1/19/10 CS 5633 Analysis of Algorithms 1

CS 5633 -- Spring 2010

Recurrences and Divide & Conquer
Carola Wenk

Slides courtesy of Charles Leiserson with small
changes by Carola Wenk

1/19/10 CS 5633 Analysis of Algorithms 2

Merge sort

MERGE-SORT A[1 . . n]
1. If n = 1, done.
2. Recursively sort A[1 . . n/2]

and A[n/2+1 . . n] .
3. “Merge” the 2 sorted lists.

Key subroutine: MERGE

1/19/10 CS 5633 Analysis of Algorithms 3

Merging two sorted arrays

20

13

7

2

12

11

9

1

1/19/10 CS 5633 Analysis of Algorithms 4

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

2

1/19/10 CS 5633 Analysis of Algorithms 5

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

1/19/10 CS 5633 Analysis of Algorithms 6

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

1/19/10 CS 5633 Analysis of Algorithms 7

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

1/19/10 CS 5633 Analysis of Algorithms 8

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

3

1/19/10 CS 5633 Analysis of Algorithms 9

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

1/19/10 CS 5633 Analysis of Algorithms 10

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

1/19/10 CS 5633 Analysis of Algorithms 11

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

1/19/10 CS 5633 Analysis of Algorithms 12

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

4

1/19/10 CS 5633 Analysis of Algorithms 13

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

20

13

12

1/19/10 CS 5633 Analysis of Algorithms 14

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

20

13

12

12

1/19/10 CS 5633 Analysis of Algorithms 15

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

20

13

12

12

Time dn = Θ(n) to merge a total
of n elements (linear time).

1/19/10 CS 5633 Analysis of Algorithms 16

Analyzing merge sort

MERGE-SORT A[1 . . n]
1. If n = 1, done.
2. Recursively sort A[1 . . n/2]

and A[n/2+1 . . n] .
3. “Merge” the 2 sorted lists

T(n)
d0
2T(n/2)

dn

Sloppiness: Should be T(n/2) + T(n/2) ,
but it turns out not to matter asymptotically.

5

1/19/10 CS 5633 Analysis of Algorithms 17

Recurrence for merge sort

T(n) =
d0 if n = 1;
2T(n/2) + dn if n > 1.

• Later we shall often omit stating the base
case when T(n) = Θ(1) for sufficiently
small n, but only when it has no effect on
the asymptotic solution to the recurrence.

• But what does T(n) solve to? I.e., is it
O(n) or O(n2) or O(n3) or …?

1/19/10 CS 5633 Analysis of Algorithms 18

The divide-and-conquer
design paradigm

1. Divide the problem (instance) into
subproblems of sizes that are
fractions of the original problem size

2. Conquer the subproblems by
solving them recursively.

3. Combine subproblem solutions.

1/19/10 CS 5633 Analysis of Algorithms 19

Example: merge sort

1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays.
3. Combine: Linear-time merge.

T(n) = 2 T(n/2) + Θ(n)

subproblems
subproblem size

work dividing
and combining

1/19/10 CS 5633 Analysis of Algorithms 20

Binary search

Example: Find 9

3 5 7 8 9 12 15

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

6

1/19/10 CS 5633 Analysis of Algorithms 21

Binary search

Example: Find 9

3 5 7 8 9 12 15

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

1/19/10 CS 5633 Analysis of Algorithms 22

Binary search

Example: Find 9

3 5 7 8 9 12 15

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

1/19/10 CS 5633 Analysis of Algorithms 23

Binary search

Example: Find 9

3 5 7 8 9 12 15

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

1/19/10 CS 5633 Analysis of Algorithms 24

Binary search

Example: Find 9

3 5 7 8 9 12 15

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

7

1/19/10 CS 5633 Analysis of Algorithms 25

Binary search

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9

3 5 7 8 9 12 15

1/19/10 CS 5633 Analysis of Algorithms 26

Recurrence for binary search

T(n) = 1 T(n/2) + Θ(1)

subproblems
subproblem size

work dividing
and combining

1/19/10 CS 5633 Analysis of Algorithms 27

Recurrence for merge sort

T(n) =
Θ(1) if n = 1;
2T(n/2) + Θ(n) if n > 1.

• How do we solve T(n)? I.e., how do we
find out if it is O(n) or O(n2) or …?

1/19/10 CS 5633 Analysis of Algorithms 28

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

8

1/19/10 CS 5633 Analysis of Algorithms 29

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

T(n)

1/19/10 CS 5633 Analysis of Algorithms 30

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

T(n/2) T(n/2)

dn

1/19/10 CS 5633 Analysis of Algorithms 31

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

T(n/4) T(n/4) T(n/4) T(n/4)

dn/2 dn/2

1/19/10 CS 5633 Analysis of Algorithms 32

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

Θ(1)
…

9

1/19/10 CS 5633 Analysis of Algorithms 33

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

Θ(1)

…

h = log n

1/19/10 CS 5633 Analysis of Algorithms 34

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

Θ(1)

…

h = log n

dn

1/19/10 CS 5633 Analysis of Algorithms 35

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

Θ(1)

…

h = log n

dn

dn

1/19/10 CS 5633 Analysis of Algorithms 36

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

Θ(1)
…

h = log n

dn

dn

dn

…

10

1/19/10 CS 5633 Analysis of Algorithms 37

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

Θ(1)

…

h = log n

dn

dn

dn

#leaves = n Θ(n)

…

1/19/10 CS 5633 Analysis of Algorithms 38

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

Θ(1)

…

h = log n

dn

dn

dn

#leaves = n Θ(n)
Total Θ(n log n)

…

1/19/10 CS 5633 Analysis of Algorithms 39

Conclusions

• Merge sort runs in Θ(n log n) time.
• Θ(n log n) grows more slowly than Θ(n2).
• Therefore, merge sort asymptotically beats

insertion sort in the worst case.
• In practice, merge sort beats insertion sort

for n > 30 or so. (Why not earlier?)

1/19/10 CS 5633 Analysis of Algorithms 40

Recursion-tree method

• A recursion tree models the costs (time) of a
recursive execution of an algorithm.

• The recursion-tree method can be unreliable,
just like any method that uses ellipses (…).

• It is good for generating guesses of what the
runtime could be.

But: Need to verify that the guess is right.
→ Induction (substitution method)

11

1/19/10 CS 5633 Analysis of Algorithms 41

Substitution method

1. Guess the form of the solution:
(e.g. using recursion trees, or expansion)

2. Verify by induction (inductive step).
3. Solve for O-constants n0 and c (base case of

induction)

The most general method to solve a recurrence
(prove O and Ω separately):

1

1/21/10 CS 5633 Analysis of Algorithms 1

CS 5633 -- Spring 2010

More Divide & Conquer
Carola Wenk

Slides courtesy of Charles Leiserson with small
changes by Carola Wenk

1/21/10 CS 5633 Analysis of Algorithms 2

The divide-and-conquer
design paradigm

1. Divide the problem (instance) into
subproblems.

a subproblems, each of size n/b
2. Conquer the subproblems by

solving them recursively.
3. Combine subproblem solutions.

Runtime is f(n)

1/21/10 CS 5633 Analysis of Algorithms 3

Example: merge sort
1. Divide: Trivial.
2. Conquer: Recursively sort a=2

subarrays of size n/2=n/b
3. Combine: Linear-time merge, runtime

f(n)∈O(n)

T(n) = 2 T(n/2) + O(n)
subproblems subproblem size work dividing

and combining
T(n) = a T(n/b) + f(n)

1/21/10 CS 5633 Analysis of Algorithms 4

The master method

The master method applies to recurrences of
the form

T(n) = a T(n/b) + f (n) ,
where a ≥ 1, b > 1, and f is asymptotically
positive.

2

1/21/10 CS 5633 Analysis of Algorithms 5

Three common cases
Compare f (n) with nlogba:
1. f (n) = O(nlogba – ε) for some constant ε > 0.

• f (n) grows polynomially slower than nlogba

(by an nε factor).
Solution: T(n) = Θ(nlogba) .

2. f (n) = Θ(nlogba logkn) for some constant k ≥ 0.
• f (n) and nlogba grow at similar rates.
Solution: T(n) = Θ(nlogba logk+1n) .

1/21/10 CS 5633 Analysis of Algorithms 6

Three common cases (cont.)
Compare f (n) with nlogba:

3. f (n) = Ω(nlogba + ε) for some constant ε > 0.
• f (n) grows polynomially faster than nlogba (by

an nε factor),
and f (n) satisfies the regularity condition that
a f (n/b) ≤ c f (n) for some constant c < 1.
Solution: T(n) = Θ(f (n)) .

1/21/10 CS 5633 Analysis of Algorithms 7

Examples

Ex. T(n) = 4T(n/2) + sqrt(n)
a = 4, b = 2 ⇒ nlogba = n2; f (n) = sqrt(n).
CASE 1: f (n) = O(n2 – ε) for ε = 1.5.
∴ T(n) = Θ(n2).

Ex. T(n) = 4T(n/2) + n2

a = 4, b = 2 ⇒ nlogba = n2; f (n) = n2.
CASE 2: f (n) = Θ(n2log0n), that is, k = 0.
∴ T(n) = Θ(n2log n).

1/21/10 CS 5633 Analysis of Algorithms 8

Examples

Ex. T(n) = 4T(n/2) + n3

a = 4, b = 2 ⇒ nlogba = n2; f (n) = n3.
CASE 3: f (n) = Ω(n2 + ε) for ε = 1

and 4(n/2)3 ≤ cn3 (reg. cond.) for c = 1/2.
∴ T(n) = Θ(n3).

Ex. T(n) = 4T(n/2) + n2/logn
a = 4, b = 2 ⇒ nlogba = n2; f (n) = n2/logn.
Master method does not apply. In particular,
for every constant ε > 0, we have log n ∈ o(nε).

3

1/21/10 CS 5633 Analysis of Algorithms 9

Master theorem (summary)
T(n) = a T(n/b) + f (n)

CASE 1: f (n) = O(nlogba – ε)
⇒ T(n) = Θ(nlogba) .

CASE 2: f (n) = Θ(nlogba logkn)
⇒ T(n) = Θ(nlogba logk+1n) .

CASE 3: f (n) = Ω(nlogba + ε) and a f (n/b) ≤ c f (n)
for some constant c < 1.

⇒ T(n) = Θ(f (n)) .
1/21/10 CS 5633 Analysis of Algorithms 10

Example: merge sort

1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays.
3. Combine: Linear-time merge.

T(n) = 2 T(n/2) + O(n)
subproblems subproblem size work dividing

and combining
nlogba = nlog22 = n1 = n ⇒ CASE 2 (k = 0)

⇒ T(n) = Θ(n log n) .

1/21/10 CS 5633 Analysis of Algorithms 11

Recurrence for binary search

T(n) = 1 T(n/2) + Θ(1)

subproblems
subproblem size

work dividing
and combining

nlogba = nlog21 = n0 = 1 ⇒ CASE 2 (k = 0)
⇒ T(n) = Θ(log n) .

1/21/10 CS 5633 Analysis of Algorithms 12

Powering a number

Problem: Compute a n, where n ∈ N.

a n =
a n/2 ⋅ a n/2 if n is even;
a (n–1)/2 ⋅ a (n–1)/2 ⋅ a if n is odd.

Divide-and-conquer algorithm: (recursive squaring)

T(n) = T(n/2) + Θ(1) ⇒ T(n) = Θ(log n) .

Naive algorithm: Θ(n).

4

1/21/10 CS 5633 Analysis of Algorithms 13

Fibonacci numbers
Recursive definition:

Fn =
0 if n = 0;

Fn–1 + Fn–2 if n ≥ 2.
1 if n = 1;

0 1 1 2 3 5 8 13 21 34 ...

Naive recursive algorithm: Ω(φ n)
(exponential time), where φ =
is the golden ratio.

2/)51(+

1/21/10 CS 5633 Analysis of Algorithms 14

Computing Fibonacci
numbers

Naive recursive squaring:
Fn = φ n/ rounded to the nearest integer.5

• Recursive squaring: Θ(log n) time.
• This method is unreliable, since floating-point

arithmetic is prone to round-off errors.
Bottom-up (one-dimensional dynamic programming):
• Compute F0, F1, F2, …, Fn in order, forming

each number by summing the two previous.
• Running time: Θ(n).

1/21/10 CS 5633 Analysis of Algorithms 15

Convex Hull

• Given a set of pins on a pinboard

• And a rubber band around them

• How does the rubber band look
when it snaps tight?

• We represent convex hull as the
sequence of points on the convex
hull polygon, in counter-clockwise
order.

0

2

1

3
4

6

5

1/21/10 CS 5633 Analysis of Algorithms 16

Convex Hull: Divide & Conquer
• Preprocessing: sort the points by x-
coordinate

• Divide the set of points into two
sets A and B:

• A contains the left n/2 points,

• B contains the right n/2 points

•Recursively compute the convex
hull of A

•Recursively compute the convex
hull of B

• Merge the two convex hulls

A B

5

1/21/10 CS 5633 Analysis of Algorithms 17

Merging
• Find upper and lower tangent

• With those tangents the convex hull
of A∪B can be computed from the
convex hulls of A and the convex hull
of B in O(n) linear time

A B

1/21/10 CS 5633 Analysis of Algorithms 18

can be checked
in constant time

right turn or
left turn?

Finding the lower tangent
a = rightmost point of A
b = leftmost point of B
while T=ab not lower tangent to both

convex hulls of A and B do{
while T not lower tangent to
convex hull of A do{

a=a-1
}
while T not lower tangent to
convex hull of B do{
b=b+1

}
}

A B
0

a=2

1

5

3

4

0

1

2

3

4=b

5

6
7

1/21/10 CS 5633 Analysis of Algorithms 19

Convex Hull: Runtime
• Preprocessing: sort the points by x-
coordinate

• Divide the set of points into two
sets A and B:

• A contains the left n/2 points,

• B contains the right n/2 points

•Recursively compute the convex
hull of A

•Recursively compute the convex
hull of B

• Merge the two convex hulls

O(n log n) just once

O(1)

T(n/2)

T(n/2)

O(n)
1/21/10 CS 5633 Analysis of Algorithms 20

Convex Hull: Runtime
• Runtime Recurrence:

T(n) = 2 T(n/2) + cn

• Solves to T(n) = Θ(n log n)

6

1/21/10 CS 5633 Analysis of Algorithms 21

Matrix multiplication



















⋅



















=



















nnnn

n

n

nnnn

n

n

nnnn

n

n

bbb

bbb
bbb

aaa

aaa
aaa

ccc

ccc
ccc

Λ
ΜΟΜΜ

Λ
Λ

Λ
ΜΟΜΜ

Λ
Λ

Λ
ΜΟΜΜ

Λ
Λ

21

22221

11211

21

22221

11211

21

22221

11211

∑
=

⋅=
n

k
kjikij bac

1

Input: A = [aij], B = [bij].
Output: C = [cij] = A⋅B. i, j = 1, 2,… , n.

1/21/10 CS 5633 Analysis of Algorithms 22

Standard algorithm

for i ← 1 to n
do for j ← 1 to n

do cij ← 0
for k ← 1 to n

do cij ← cij + aik⋅ bkj

Running time = Θ(n3)

1/21/10 CS 5633 Analysis of Algorithms 23

Divide-and-conquer algorithm

n×n matrix = 2×2 matrix of (n/2)×(n/2) submatrices:
IDEA:






⋅




=





hg
fe

dc
ba

ut
sr

C = A ⋅ B
r = a·e+b·g
s = a·f+ b·h
t = c·e+d·g
u = c·f +d·h

8 recursive mults of (n/2)×(n/2) submatrices
4 adds of (n/2)×(n/2) submatrices

1/21/10 CS 5633 Analysis of Algorithms 24

Analysis of D&C algorithm

nlogba = nlog28 = n3 ⇒ CASE 1 ⇒ T(n) = Θ(n3).

No better than the ordinary algorithm.

submatrices
submatrix size

work adding
submatrices

T(n) = 8 T(n/2) + Θ(n2)

7

1/21/10 CS 5633 Analysis of Algorithms 25

7 mults, 18 adds/subs.
Note: No reliance on
commutativity of mult!

7 mults, 18 adds/subs.
Note: No reliance on
commutativity of mult!

Strassen’s idea
• Multiply 2×2 matrices with only 7 recursive mults.

P1 = a ⋅ (f – h)
P2 = (a + b) ⋅ h
P3 = (c + d) ⋅ e
P4 = d ⋅ (g – e)
P5 = (a + d) ⋅ (e + h)
P6 = (b – d) ⋅ (g + h)
P7 = (a – c) ⋅ (e + f)

r = P5 + P4 – P2 + P6
s = P1 + P2
t = P3 + P4
u = P5 + P1 – P3 – P7

1/21/10 CS 5633 Analysis of Algorithms 26

Strassen’s idea
• Multiply 2×2 matrices with only 7 recursive mults.

P1 = a ⋅ (f – h)
P2 = (a + b) ⋅ h
P3 = (c + d) ⋅ e
P4 = d ⋅ (g – e)
P5 = (a + d) ⋅ (e + h)
P6 = (b – d) ⋅ (g + h)
P7 = (a – c) ⋅ (e + f)

r = P5 + P4 – P2 + P6
= (a + d) (e + h)

+ d (g – e) – (a + b) h
+ (b – d) (g + h)

= ae + ah + de + dh
+ dg –de – ah – bh
+ bg + bh – dg – dh

= ae + bg

1/21/10 CS 5633 Analysis of Algorithms 27

Strassen’s algorithm
1. Divide: Partition A and B into

(n/2)×(n/2) submatrices. Form P-terms
to be multiplied using + and – .

2. Conquer: Perform 7 multiplications of
(n/2)×(n/2) submatrices recursively.

3. Combine: Form C using + and – on
(n/2)×(n/2) submatrices.

T(n) = 7 T(n/2) + Θ(n2)

1/21/10 CS 5633 Analysis of Algorithms 28

Analysis of Strassen
T(n) = 7 T(n/2) + Θ(n2)

nlogba = nlog27 ≈ n2.81 ⇒ CASE 1 ⇒ T(n) = Θ(nlog 7).

Best to date (of theoretical interest only): Θ(n2.376Λ).

The number 2.81 may not seem much smaller than
3, but because the difference is in the exponent, the
impact on running time is significant. In fact,
Strassen’s algorithm beats the ordinary algorithm
on today’s machines for n ≥ 30 or so.

8

1/21/10 CS 5633 Analysis of Algorithms 29

Conclusion

• Divide and conquer is just one of several
powerful techniques for algorithm design.

• Divide-and-conquer algorithms can be
analyzed using recurrences and the master
method (so practice this math).

• Can lead to more efficient algorithms

