Point Location

e Preprocess a planar, polygonal subdivision
for point location queries.

p=(18, 11)

e Input is a subdivision S of complexity n,
say, number of edges.

e Build a data structure on S so that for a
query point p = (z,y), we can find the face
containing p fast.

e Important metrics: space and query
complexity.

Subhash Suri UC Santa Barbara

The Slab Method

e Draw a vertical line through each vertex.
This decomposes the plane into slabs.

e In each slab, the vertical order of line
segments remains constant.

AR

sI
Partition into slabs Slab 1
e If we know which slab p = (z,y) lies, we

can perform a binary search, using the
sorted order of segments.

Subhash Suri UC Santa Barbara

The Slab Method

e To find which slab contains p, we perform
a binary search on x, among slab
boundaries.

e A second binary search in the slab
determines the face containing p.

AR

Partition into slabs Slab 1

e Thus, the search complexity is O(logn).
e But the space complexity is ©(n?).

Subhash Suri UC Santa Barbara

Optimal Schemes

e There are other schemes (kd-tree,
quad-trees) that can perform point
location reasonably well, they lack
theoretical guarantees. Most have very
bad worst-case performance.

e Finding an optimal scheme was
challenging. Several schemes were
developed in 70’s that did either O(logn)
query, but with O(nlogn) space, or
O(log®n) query with O(n) space.

e Today, we will discuss an elegant and
simple method that achieved optimality,
O(logn) time and O(n) space [D.
Kirkpatrick ’83].

e Kirkpatrick’s scheme however involves
large constant factors, which make it less
attractive in practice.

e Later we will discuss a more practical,
randomized optimal scheme.

Subhash Suri UC Santa Barbara

Kirkpatrick’s Algorithm

e Start with the assumption that planar
subdivision is a triangulation.

e If not, triangulate each face, and label
each triangular face with the same label as
the original containing face.

e If the outer face is not a triangle, compute
the convex hull, and triangulate the
pockets between the subdivision and CH.

e Now put a large triangle abc around the
subdivision, and triangulate the space
between the two.

Subhash Suri UC Santa Barbara

Modifying Subdivision

e By Euler’e formula, the final size of this
triangulated subdivision is still O(n).

e This transformation from S to
triangulation can be performed in
O(nlogn) time.

e If we can find the triangle containing p,
we will know the original subdivision face
containing p.

Subhash Suri UC Santa Barbara

Hierarchical Method

e Kirkpatrick’s method is hierarchical:
produce a sequence of increasingly coarser

triangulations, so that the last one has
O(1) size.

e Sequence of triangulations 1,714, ..., T},
with following properties:

1. Ty is the initial triangulation, and 7}, is
just the outer triangle abc.

2. k is O(logn).

3. Each triangle in 7;,; overlaps O(1)
triangles of T;.

e Let us first discuss how to construct this
sequence of triangulations.

Subhash Suri UC Santa Barbara

Building the Sequence

e Main idea is to delete some vertices of T;.

e Their deletion creates holes, which we
re-triangulate.

Vertex deletion and re—triangulation

¢ We want to go from O(n) size subdivision
To to O(1) size subdivision T} in O(logn)
steps.

e Thus, we need to delete a constant
fraction of vertices from 7T;.

e A critical condition is to ensure each new
triangle in 7;,, overlaps with O(1)
triangles of T;.
Subhash Suri UC Santa Barbara

Independent Sets

e Suppose we want to go from T; to T;,,, by
deleting some points.

e Kirkpatrick’s choice of points to be
deleted had the following two properties:

[Constant Degree| Each deletion candidate
has O(1) degree in graph T;.

e If p has degree d, then deleting p leaves
a hole that can be filled with d — 2
triangles.

¢ When we re-triangulate the hole, each
new triangle can overlap at most d
original triangles in T;.

Vertex deletion and re-triangulation

Subhash Suri UC Santa Barbara

Independent Sets

[Independent Sets] No two deletion
candidates are adjacent.

e This makes re-triangulation easier; each
hole handled independently.

Vertex deletion and re-triangulation

Subhash Suri UC Santa Barbara

I.S. Lemma

Lemma: Every planar graph on n vertices
contains an independent vertex set of size
n/18 in which each vertex has degree at most
8. The set can be found in O(n) time.

e We prove this later. Let’s use this now to
build the triangle hierarchy, and show how
to perform point location.

e Start with 7. Select an ind set S, of size
n/18, with max degree 8. Never pick a,b, c,
the outer triangle’s vertices.

e Remove the vertices of Sy, and
re-triangulate the holes.

e Label the new triangulation 7;. It has at
most %n vertices. Recursively build the
hierarchy, until 7} is reduced to abc.

e The number of vertices drops by 17/18
each time, so the depth of hierarchy is

Subhash Suri UC Santa Barbara

Illustration

The Data Structure

e Modeled as a DAG: the root corresponds
to single triangle T;.

e The nodes at next level are triangles of
Ty_1-

e Each node for a triangle in 7;,; has
pointers to all triangles of T; that it
overlaps.

e To locate a point p, start at the root. If p
outside T}, we are done (exterior face).
Otherwise, set t = T}, as the triangle at
current level containing p.

Subhash Suri ’ UC Santa Barbara

The Search

oA TN
p q r st “u Vv W Xy z
Jb\d/\ll)/_\lut
abcdef ghij k1l mno

e Check each triangle of T;_; that overlaps
with t—at most 6 such triangles. Update
t, and descend the structure until we
reach 7Tj.

e Output ¢.

Subhash Suri UC Santa Barbara

Analysis

\AA A

//\
u/%k//%

l/\/\ W

e Search time is O(logn)—there are O(logn)
levels, and it takes O(1) time to move from
level ¢ to level ¢ — 1.

e Space complexity requires summing up
the sizes of all the triangulations.

e Since each triangulation is a planar graph,
it is sufficient to count the number of
vertices.

e The total number of vertices in all
triangulations is

n(1+ (17/18) + (17/18)% + (17/18)° + - -+) < 18n.

e Kirkpatrick structure has O(n) space and
O(logn) query time.

Subhash Suri UC Santa Barbara

Finding I.S.

e We describe an algorithm for finding the
independent set with desired properties.

e Mark all nodes of degree > 9.

e While there is an unmarked node, do

1. Choose an unmarked node v.
2. Add v to IS.
3. Mark v and all its neighbors.

e Algorithm can be implemented in O(n)
time—keep unmarked vertices in list, and
representing 1’ so that neighbors can be
found in O(1) time.

Subhash Suri UC Santa Barbara

I.S. Analysis

e Existence of large size, low degree IS
follows from Euler’s formula for planar
graphs.

e A triangulated planar graph on n vertices
has e = 3n — 6 edges.

¢ Summing over the vertex degrees, we get
Zdeg(v) = 2e = 6n — 12 < 6n.
v

¢ We now claim that at least n/2 vertices
have degree < 8.

e Suppose otherwise. Then n/2 vertices all have degree > 9.
The remaining have degree at least 3. (Why?)

e Thus, the sum of degrees will be at least 95 + 35 = 6n,
which contradicts the degree bound above.

e So, in the beginning, at least n/2 nodes are unmarked. Each

chosen v marks at most 8 other nodes (total 9 counting
itself.)

e Thus, the node selection step can be repeated at least n/18
times.

e So, there is a I.S. of size > n /18, where each node has degree
< 8.

Subhash Suri UC Santa Barbara

Trapezoidal Maps

e A randomized point location scheme, with
(expected) query O(logn), space O(n), and
construction time O(nlogn).

e The expectation does not depend on the
polygonal subdivision. The bounds holds
for any subdivision.

e It appears simpler to implement, and its
constant factors are better than
Kirkpatrick’s.

e The algorithm is based on trapezoidal
maps, or decompositions, also encountered
earlier in triangulation.

Subhash Suri UC Santa Barbara

Trapezoidal Maps

e Input a set of non-intersecting line
segments S = {s1,82,...,5,}-

e Query: given point p, report the segment
directly above p.

e The region label can be easily encoded
into the line segments.

e Map is created by shooting a ray
vertically from each vertex, up and down,
until a segment is hit.

e In order to avoid degeneracies, assume
that no segment is vertical.

e The resulting rays plus the segments
define the trapezoidal map.

Subhash Suri UC Santa Barbara

Trapezoidal Maps

e Enclose S into a bounding box to avoid
infinite rays.

e All faces of the subdivision are trapezoids,
with vertical sides.

e Size Claim: If S§ has n segments, the map
has at most 6n +4 vertices and 3n+ 1 traps.

e Each vertex shoots one ray, each resulting in two new
vertices, so at most 6n vertices, plus 4 for the outer box.

e The left boundary of each trapezoid is defined by a segment
endpoint, or lower left corner of enclosing box.

e The corner of box acts as leftpoint for one trap; the right
endpoint of any segment also for one trap; and left endpoint

of any segment for at most 2 trapezoids. So total of 3n + 1.

Subhash Suri UC Santa Barbara

Construction

e Plane sweep possible, but not helpful for
point location.

e Instead we use randomized incremental
construction.

e Historically, invented for randomized
segment intersection. Point location an
intermediate problem.

e Start with outer box, one trapezoid.
Then, add one segment at a time, in an
arbitrary, not sorted, order.

o | e
PN
— | [==
I Before - I After inserting sl ‘

Subhash Suri UC Santa Barbara

Construction

o Let S; ={s1,59,...,5;} be first ¢ segments,
and 7; be their trapezoidal map.

e Suppose 7;_; built, and we add s;.

e Find the trapezoid containing the left
endpoint of s;. Defer for now: this is point
location.

e Walk through 7;_1, identifying trapezoids
that are cut. Then, “fix them up”.

e Fixing up means, shoot rays from left and
right endpoints of s;, and trim the earlier
rays that are cut by s;.

2

S1

Before After inserting s
Subhash Suri UC Santa Barbara

Analysis

e Observation: Final structure of trap map
does not depend on the order of segments.

(Why?)

e Claim: Ignoring point location, segment
i’s insertion takes O(k;) time if k; new
trapezoids created.

e Proof:

— Each endpoint of s; shoots two rays.

— Additionally, suppose s; interrupts K existing ray shots,
so total of K + 4 rays need processing.

— If K = 0, we get exactly 4 new trapezoids.

— For each interrupted ray shot, a new trapezoid created.

— With DCEL, update takes O(1) per ray.

Before

Subhash Suri UC Santa Barbara

Worst Case

e In a worst-case, k; can be ©(¢). This can
happen for all 7, making the worst-case
run time > . i = O(n?).

e Using randomization, we prove that if
segments are inserted in random order,
then expected value of k; is O(1)!

e So, for each segment s;, the expected
number of new trapezoids created is a
constant.

e Figure below shows a worst-case example.
How will randomization help?

n241

Subhash Suri UC Santa Barbara

Randomization

e Theorem: Assume sq,59,...,5, is a random
permutation. Then, E|k;| = O(1), where k;
trapezoids created upon s;’s insertion, and
the expectation is over all permutations.

e Proof.

1. Consider 7;, the map after s;’s insertion.

2. 7T; does not depend on the order in which segments
s1, ..., S; were added.

3. Reshuflle s{,...,s;. What’s the probability that a
particular s was the last segment added?

4. The probability is 1/i.

We want to compute the number of trapezoids that would

have been created if s were the last segment.

o

The segments that the trapezoid
The trapezoids that depend on s depends on.

Subhash Suri UC Santa Barbara

Proof

e Say trapezoid A depends on s if A would be created by s if s
were added last.

e Want to count trapezoids that depend on each segment, and
then find the average over all segments.

e Define (A, s) = 1 if A depends on s; otherwise, §(A, s) = 0.

The segments that the trapezoid
The trapezoids that depend on s depends on.

e The expected complexity is

Bk = - 30 30 6(a,)

SESi A€77L~

e Some segments create a lot of trapezoids; others very few.

e Switch the order of summation:

Bk = = 30 7 8(a,9)

AE’Ti SGSi

Subhash Suri UC Santa Barbara

Proof

The segments that the trapezoid
The trapezoids that depend on s depends on.

e Now we are counting number of segments each trapezoid
depents on.

Bk = = 3 30 6(a,)

AG’E; SGS,’:

e This is much easier—each A depends on at most 4 segments.

e Top and bottom of A defined by two segments; if either of
them added last, then A comes into existence.

e Left and right sides defined by two segments endpoints, and
if either one added last, A is created.

e Thus, ZsESi (A, s) < 4.

e 7, has O(¢) trapezoids, so

1 1 1
Elk] = — > 4=-4|Ti| = -0(:) = O(1).
A€T;

e End of proof.

Subhash Suri UC Santa Barbara

Point Location

e Like Kirkpatrick’s, point location
structure is a rooted directed acyclic
graph.

e To query processor, it looks like a binary
tree, but subtree may be shared.

e Tree has two types of nodes:

— z-node: contains the z-coordinate of a
segment endpoint. (Circle)
— y-node: pointer to a segment. (Hexagon)

e A leaf for each trapzedoid.

Subhash Suri UC Santa Barbara

Point Location

e Children of z-node correspond to points
lying to the left and right of x coord.

e Children of y-node correspond to space
below and above the segment.

e y-node searched only when query’s
x-coordinate is within segment’s span.

e Example: query in region D.

e Encodes the trap decomposition, and
enables point location during the
construction as well.

Subhash Suri UC Santa Barbara

Building the Structure

e Incremental construction, mirroring the

trapezoidal map.

e When a segment s added, modify the tree
to account for changes in trapezoids.

e Essentially, some leaves will be replaced

by new subtrees.

e Like Kirkpatrick’s, each old trapezoid will

overlap O(1) new trapezoids.

D

e Each trapezoid appears exactly once as a

leaf. For instance, F'.

Subhash Suri

UC Santa Barbara

Adding a Segment

e Consider adding segment ss.

Subhash Suri UC Santa Barbara

Adding a Segment

e Changes are highly local.

e If segment s passes entirely through an
old trapezoid ¢, then ¢ is replaced by two
traps t’,t".

— During search, we need to compare
query point to s to decide above/below.

— So, a new y-node added which is the
parent of ¢’ and ¢”.

e If an endpoint of s lies in ¢, then we add a
z-node to decide left /right and a y-node
for the segment.

Subhash Suri UC Santa Barbara

Analysis

e Space is O(n), and query time is O(logn),
both in expectation.

e Expected bound depends on the random
permutation, and not on the choice of
input segments or the query point.

e The data structure size x number of
trapezpoids, which is O(n), since O(1)
expected number of traps created when a
new segment inserted.

e In order to analyze query bound, fix a
query q.

e We consider how ¢ moves incrementally
through the trapezoidal map as new
segments are inserted.

e Search complexity « number of trapezoids
encountered by q.

Subhash Suri UC Santa Barbara

Search Analysis

e Let A, be trapezoid containing ¢ after
insertion of :th segment.

o If A, = A,_; then new insertion does not
affect ¢’s trapezoid. (E.g. ¢ € B and s3’s
insertion.)

o If A, # A,_1, then new segment deleted ¢’s
trapezoid, and ¢ needs to locate itself
among the (at most 4) new traps.

e g could fall 3 levels in the tree. E.g. ¢ € C
falling to J after s3’s insertion.

Subhash Suri UC Santa Barbara

Search Analysis

e Let P; be probability that A; # A;,_1, over
all random permutation.

e Since ¢ can drop < 3 levels, expected
search path length is Y | 3P,.

e We will show that P, < 4/i. That will
imply that expected search path length is

Bi% — 12271:% = 121lnn
i=1 i=1

e Why is P, <4/i? Use backward analysis.

e The trapezoid A; depends on at most 4
segments. The probability that :th
segment is one of these 4 is at most 4/.

Subhash Suri UC Santa Barbara

Final Remarks

e Expectation only says that average search
path is small. It can still have large
variance.

e The trapezoidal map data structure has
bounds on variance too. See the textbook
for complete analysis.

Theorem: For any A > 0, the probability
that depth of the randomized seach
structure exceeds 3\ In(n + 1) is at most
2
(’I’L—|— 1))\1n 1.25—-3

e More careful analysis can provide better
constants for the data structure.

Subhash Suri UC Santa Barbara

