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Abstract

We consider the complexity of Delaunay triangulations of sets of points in R3 under certain
practical geometric constraints. The spread of a set of points is the ratio between the longest
and shortest pairwise distances. We show that in the worst case, the Delaunay triangulation of
n points in IR> with spread A has complexity Q(min{A3,nA,n?}) and O(min{A* n?}). For the
case A = O(4/n), our lower bound construction consists of a grid-like sample of a right circular
cylinder with constant height and radius. We also construct a family of smooth connected
surfaces such that the Delaunay triangulation of any good point sample has near-quadratic
complexity.

1 Introduction

Delaunay triangulations and Voronoi diagrams are used as a fundamental tool in several geomet-
ric application areas, including finite-element mesh generation [17, 25, 37, 40|, deformable surface
modeling [16], and surface reconstruction [1, 3, 4, 5, 12, 35]. Many algorithms in these application
domains begin by constructing the Delaunay triangulation of a set of n points in IR>. Delaunay tri-
angulations can have complexity Q(n?) in the worst case, and as a result, all these algorithms have
worst-case running time Q(n?). However, this behavior is almost never observed in practice except
for highly-contrived inputs. For all practical purposes, three-dimensional Delaunay triangulations
appear to have linear complexity.

One way to explain this frustrating discrepancy between theoretical and practical behavior
would be to identify geometric constraints that are satisfied by real-world input and to analyze
Delaunay triangulations under those constraints. These constraints would be similar to the realistic
input models such as fatness or simple cover complexity [8, 46], which many authors have used
to develop geometric algorithms with good practical performance. Unlike these works, however,
our (immediate) goal is not to develop new algorithms, but rather to formally explain the good
practical performance of existing code.

*Portions of this work were done while the author was visiting INRIA, Sophia-Antipolis, with the support of a
UIUC/CNRS/INRIA travel grant. This research was also partially supported by a Sloan Fellowship and by NSF
CAREER grant CCR-0093348. An extended abstract of this paper was presented at the 17th Annual ACM Sym-
posium on Computational Geometry [30]. See http://www.cs.uiuc.edu/jeffe/pubs/spread.html for the most recent
version of this paper.



2 Jeff Erickson

Dwyer [23, 24| showed that if a set of points is generated uniformly at random from the unit
ball, its Delaunay triangulation has linear expected complexity. Golin and Na [33] recently derived
a similar result for random points on the surface of a three-dimensional convex polytope with con-
stant complexity. Although these results are encouraging, they are unsatisfying as an explanation
of practical behavior. Real-world point data generated by laser range finders, digital cameras,
tomographic scanners, and similar input devices is often highly structured.

This paper considers the complexity of Delaunay triangulations under two types of practical
geometric constraints. First, in Section 2, we consider the worst-case Delaunay complexity as
a function of both the number of points and the spread—the ratio between its diameter and
the distance between its closest pair. For any n and A, we construct a set of n points with
spread A whose Delaunay triangulation has complexity Q(min{A3, nA, n?}). When A = O(y/n),
our lower bound construction consists of a grid-like sample of a right circular cylinder with constant
height and radius. We also show that the worst-case complexity of a Delaunay triangulation is
O(min{A* n?}). We conjecture that our lower bounds are tight, and sketch a possible technique to
improve our upper bounds.

An important application of Delaunay triangulations that has received a lot of attention re-
cently is surface reconstruction: Given a set of points from a smooth surface X, reconstruct an
approximation of ¥. Several algorithms provably reconstruct surfaces if the input points satisfy
certain sampling conditions [4, 5, 12, 35]. In Section 3, we consider the complexity of Delaunay
triangulations of good samples of smooth surfaces. Not surprisingly, oversampling almost any sur-
face can produce a point set whose Delaunay triangulation has quadratic complexity. We show
that even surface data with no oversampling can have quadratic Delaunay triangulations and that
there are smooth surfaces where every good sample has near-quadratic Delaunay complexity. We
also derive similar results for randomly distributed points on non-convex smooth surfaces. An
important tool in our proofs is the definition of sample measure, which measures the intrinsic
difficulty of sampling a smooth surface for reconstruction.

Throughout the paper, we analyze the complexity of three-dimensional Delaunay triangulations
by counting the number of edges. T'wo points are joined by an edge in the Delaunay triangulation
of a set S if and only if they lie on a sphere with no points of S in its interior. Euler’s formula
implies that any three-dimensional triangulation with n vertices and e edges has at most 2e — 2n
triangles and e — n tetrahedra, since the link of every vertex is a planar graph.

2 Sublinear Spread

We define the spread A of a set of points (also called the distance ratio [18]) as the ratio between the
longest and shortest pairwise distances. In this section, we derive upper and lower bounds on the
worst-case complexity of the Delaunay triangulation of a point set in IR, as a function of both the
number of points and the spread. The spread is minimized at @(n'/3) when the points are packed
into a tight lattice, in which case the Delaunay triangulation has only linear complexity. On the
other hand, all known examples of point sets with quadratic-complexity Delaunay triangulations,
such as points on the moment curve or a pair of skew lines, have spread QQ(n). Thus, it is natural to
ask how the complexity of the Delaunay triangulation changes as the spread varies between these
two extremes.

The spread of a set of points is loosely related to its dimensionality. If a set uniformly covers a
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bounded region of space, a surface of bounded curvature, or a curve of bounded curvature, its spread
is respectively ©(n'/3), ®(n'/2), or ©(n). The case of surface data is particularly interesting in light
of numerous algorithms that reconstruct surfaces using a subcomplex of the Delaunay triangulation.
We will discuss surface reconstruction in more detail in the next section. Indyk et al. [36] observed
that molecular data usually has sublinear spread, by examining a database of over 100,000 small
drug molecules.

Several algorithmic and combinatorial bounds are known that depend favorably on spread,
especially for dense point sets; a d-dimensional point set is dense if its spread is O(n'/4). Edels-
brunner et al. [28] showed that a dense point set in the plane has at most O(n’/¢) halving lines?,
and a dense point set in IR® has at most O(n’/3) halving planes. The best upper bounds known
for arbitrary point sets are O(n%/3) [19] and O(n%/?) [41], respectively. Valtr [42, 43, 44] proved
several other combinatorial bounds for dense planar sets that improve the corresponding worst-
case bounds. Verbarg [45] describes an efficient algorithm to find approximate center points in
dense point sets. Cardoze and Schulman [14], Indyk et al. [36], and Gavrilov et al. [31] describe
algorithms for approximate geometric pattern matching whose running times depend favorably on
the spread of the input set. Clarkson [18] describes data structures for nearest neighbor queries in
arbitrary metric spaces which are efficient if the spread of the input is small.

Although our results are described in terms of spread, they also apply to other more robust
quality measures. For example, we could define the average spread of a point set as the average
(in some sense), over all points p, of the ratio between the distances from p to its farthest and
nearest neighbors. In each of our constructions, the distance ratios of different points differ by at
most a small constant factor, so our results apply to average spread as well.

2.1 Lower Bounds

The crucial special case of our lower bound construction is A = ©(y/n). For any positive integer x,
let [x] denote the set {1,2,...,x}. Our construction consists of n evenly spaced points on a helical

S n — y COos y Sin k E n .

See Figure 1. S 5 is a grid-like uniform e-sample (see Section 3) of a right circular cylinder, where
£ = @(\/1/—71). By adding additional points on two hemispherical caps at the ends of the cylinder,
we can extend S 4 into a uniform e-sample of a smooth convex surface with bounded curvature
and constant local feature size. The closest pair of points in S 4 has distance 2n/\/m +o(1), and
the diameter of S 5 is 2t—o0(1), so the spread of S s is vn—o(1). We will show that the Delaunay

triangulation of S 5 has complexity Q(n3/?).

Let hy(t) denote the helix (ot,cost,sint), where the parameter & > 0 is called the pitch. The
combinatorial structure of the Delaunay triangulation depends entirely on the signs of certain
insphere determinants. Using elementary trigonometric identities and matrix operations, we can

!Edelsbrunner et al. [28] only prove the upper bound O(n® /4 /1log* n); the improved bound follows immediately
from their techniques and Dey’s more recent O(n*/3) worst-case bound [19].
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Figure 1. A set of n points whose Delaunay triangulation has complexity Q(n3/?)

simplify the insphere determinant for five points on this helix as follows.

at; cost; sint; oczt% +cos?t + sin? t
oty costy, sinty oczt% +cos?ty + sin? ty
otz cost; sints oc2t§ + cos? t3 + sin? t3| = «
oty costy sinty ocztﬁ + cos? t; +sin’ t4
ots costs sints ocztg + cos? t5 + sin® t5

t; costy sint; 3
t, costy sint) t%
cost; sintj t%
ty costy sinty tﬁ
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ts costs sints t%

We obtain the surprising observation that changing the pitch & does not change the combinatorial
structure of the Delaunay triangulation of any set of points on the helix. (More generally, scaling
any set of points on any circular cylinder along the cylinder’s axis leaves the Delaunay triangulation
invariant.) Thus, for purposes of analysis, it suffices to consider the case « = 1. Let h(t) = hy(t) =
(t,cost,sint).

Our first important observation is that any set of points on a single turn of any helix has a
neighborly Delaunay triangulation, meaning that every pair of points is connected by a Delaunay
edge. For any real value t, define the bitangent sphere 3(t) to be the unique sphere passing
through h(t) and h(—t) and tangent to the helix at those two points.

Lemma 2.1. For any 0 < t < 7, the sphere (3(t) intersects the helix h only at its two points of
tangency.

Proof: Symmetry considerations imply that the bitangent sphere must be centered on the y-axis,
so it is described by the equation x2 + (y — a)? +z2 = r2 for some constants a and r. Let y denote
the intersection curve of 3(t) and the cylinder y? + z? = 1. Every intersection point between f3(t)
and the helix must lie on y. If we project the helix and the intersection curve to the xy-plane,
we obtain the sinusoid y = cosx and a portion of the parabola y = y(x) = (x* — 12 + a? + 1)/2a.
These two curves meet tangentially at the points (t,cost) and (—t,cost).

The mean value theorem implies that y(x) = cos x at most four times in the range —71 < x < 7.
(Otherwise, the curves y” = —cosx and y” =y"”(x) = 1/a would intersect more than twice in that
range.) Since the curves meet with even multiplicity at two points, those are the only intersection
points in the range —mt < x < 7. Since y(x) is concave, we have y(+7) < cos+m = —1, so there
are no intersections with |x| > 7. Thus, the curves meet only at their two points of tangency. O

Corollary 2.2. Any set S of n points on the helix h(t) in the range —m < t < 7 has a neighborly
Delaunay triangulation.
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Figure 2. The intersection curve of the cylinder and a bitangent sphere projects to a parabola on the xy-plane.

Proof: Let p and g be arbitrary points in S, and let 3 be the unique ball tangent to the helix at
p and ¢q. By Lemma 2.1, 3 does not otherwise intersect the helix and therefore contains no point
in S. Thus, p and q are neighbors in the Delaunay triangulation of S. O

We can now easily complete the analysis of our helical point set S ;. Lemma 2.1 implies that
every point in S ¥ is connected by a Delaunay edge to every other point less than a full turn
around the helix h m(t) Each full turn of the helix contains at least |\/n| points. Thus, except
for points on the first and last turn, every point has at least 2|\/n| Delaunay neighbors, so the
total number of Delaunay edges is more than 2|/n|(n —2[y/n]) > 2n%?2 — 4n. This crude lower
bound does not count Delaunay edges in the first and last turns of the helix, nor edges that join
points more than one turn apart. It is not difficult to show that there are at most O(n) uncounted
Delaunay edges if \/n is an integer [29] and at most O(n3/2) uncounted edges in general.

Theorem 2.3. For any n, there is a set of n points in R3 with spread /N whose Delaunay trian-
gulation has complexity Q(n3/2). Moreover, this point set is a uniform sample of a smooth convex
surface with constant local feature size.

We generalize our helix construction to other values of the spread A as follows.

Theorem 2.4. For any n and A = Q(n'/3), there is a set of n points in IR? with spread A whose
Delaunay triangulation has complexity Q(min{A3, nA, n?}).

Proof: There are three cases to consider, depending on whether the spread is at least n, between
v/n and n, or at most \/n. The first case is trivial.
For the case /n < A < n, we take a set of evenly spaced points on a helix with pitch A/n:

SA :{(Zﬂk, cos 2k 'nzﬂk) ‘ k € [n]}.

n A SETA

Every point in S is connected by a Delaunay edge to every other point less than a full turn away on
the helix, and each turn of the helix contains (Q(A) points, so the total complexity of the Delaunay
triangulation is Q(nA).

The final case n!/3 < A < \/n is somewhat more complicated. Our point set consists of several
copies of our helix construction, with the helices positioned at the points of a square lattice, so the
entire construction loosely resembles a mattress. Specifically,

SA = zlk 6i+cosZlk 6'—|—sinZlk
A — T ) \/F’ ) \/F

i,jewl ke [wr]},
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where r and w are parameters to be determined shortly. This set contains n = w3r points. The
diameter of Sp is @(w) and the closest pair distance is @(1/4/7), so its spread is A = O(w/1).
Thus, given n and A, we have w = ©(n/A?) and r = ©(A°/n?).

To complete our analysis, we need to show that Delaunay circumspheres from one helix do not
interfere significantly with nearby helices. Let $4(t) denote the sphere tangent to the helix hy at
hy(t) and hy(—t), for some 0 < & < 1 and 0 < t < 7t/2. We claim that the radius of this sphere
is less than 3. Since (4(t) is centered on the y-axis (see Lemma 2.1), we can compute its radius
by computing its intersection with the y-axis. The intersection points satisfy the determinant
equation

1 ot cost sint 14 o?t?

0 o —sint cost 22t

1 —at cost —sint 1+ a?t?| =0.
0 —« -—sint —cost 202t

1 0 y 0 y?

For any o« > 0 and t > 0, this equation simplifies to
(sint)y? + 20ty — (sint)(1 + «?t?) =0,

which implies that the radius of f4(t) is

att?
\/,2 + o?t2 4 1.
sin” t

We easily verify that this is an increasing function of both « and t in the range of interest. Thus,
to prove our claim, it suffices to observe that the radius of B1(7/2) is \/m2/2 + 1 ~ 2.4361 < 3.
Since adjacent helices are separated by distance 6, every point in S, is connected by a Delaunay
edge to every point at most half a turn away in the same helix. Each turn of each helix contains
Q(4/7) points, so the Delaunay triangulation of S has complexity Q(n./r) = Q(A3). O

2.2 Upper Bounds

Let B be a ball of radius R in IR3, and let by, by, bs,... be balls of radius at least v, where
1 <1 <R. Our upper bound proof uses geometric properties of the ‘Swiss cheese’ C = B \ |J; bi.
See Figure 3(a). In our upper bound proofs, B will be a ball that contains a subset of the points,
and each b; will be an empty circumsphere of some Delaunay edge.

Lemma 2.5. The surface area of C is O(R3/r).

Proof: The outer surface 9C N 3B clearly has area O(R?) = O(R3/r), so it suffices to bound the
surface area of the ‘holes’. For each i, let H; = B N 0b; be the boundary of the ith hole, and
let H=J; Hi = 0C\ 0B. For any point x € H, let sy denote the open line segment of length r
extending from x towards the center of the ball b; with x on its boundary. (If x lies on the surface
of more than one b, choose one arbitrarily.) Let S = [J,}; sx be the union of all such segments,
and for each i, let S; = Ueri sx. Bach S; is a fragment of a spherical shell of thickness r inside
the ball b;. See Figure 3(b).
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(2) (b)

Figure 3. (a) Swiss cheese (in R?). (b) Shell fragments used to bound its surface area.

We can bound the volume of each shell fragment S; as follows:

TL—T
3

2
(T1 T) area(H;) > garea(Hi),

vol(Si) = % area(H;) — "
i

where 1; > 1 is the radius of b;. The triangle inequality implies that s, and s, are disjoint for any
two points x,y € H, so the shell fragments S; are pairwise disjoint. Finally, since S fits inside a
ball of radius R+ 1 < 2R, its volume is O(R3). Thus, we have

: 3
area(H) = Z aIea(H_,L) S Z 3V0:"(Sl) _ 3V(?:-(S) S 47':‘R . .
i i

At this point, we would like to argue that any unit ball whose center is on the boundary
of C contains a constant amount of surface area of C, so that we can apply a packing argument.
Unfortunately, C might contain isolated components and thin handles with arbitrarily small surface
area (like the small triangular component in Figure 3(a)). Thus, we consider balls centered slightly
away from the boundary of C.

Lemma 2.6. Let U be any unit ball whose center is in C and at distance 2/3 from 0C. Then U
contains Q(1) surface area of C.

Proof: Without loss of generality, assume that U is centered at the origin and that (0,0,2/3) is
the closest point of 0C to the origin. Let U’ be the open ball of radius 2/3 centered at the origin,
let V be the open unit ball centered at (0,0,5/3), and let W be the cone whose apex is the origin
and whose base is the circle 9U N 0V. See Figure 4. U’ lies entirely inside C, and since r > 1, we
easily observe that V lies entirely outside C. Thus, the surface area of 0CNW C 9CN U is at least
the area of the spherical cap oU’ N W, which is exactly 47t/27. O

Theorem 2.7. Let S be a set of points in IR®> whose closest pair is at distance 2, and let v be any
real number. Any point in S has O(r%) Delaunay neighbors at distance at most r.

Proof: Let o be an arbitrary point in S, and let B be a ball of radius r centered at o. Call a
Delaunay neighbor of o0 a friend if it lies inside B, and call a friend q interesting if there is another
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-

Figure 4. Proof of Lemma 2.6

point p € S (not necessarily a Delaunay neighbor of o) such that |op| < |oq| and Zpoq < 1/r. A
simple packing argument implies that o has at most O(r?) boring friends.

Let g be an interesting friend of o, and let p be a point that makes q interesting, as described
above. Since ( is a Delaunay neighbor of o, there is a ball dy that has o and q on its boundary
and no points of S in its interior. In particular, p is outside dq, so the radius of dq is greater
than the radius of the circle passing through o, p, and q. Let c be the center of this circle. Since
/Zpoq < 1/r, we must have /pcq < 2/r, and since |pq| > 2, we must have |cq| > r. See Figure 5.
We have just shown that the radius of dq is at least 1.

Figure 5. The radius of any interesting Delaunay ball is at least .

For every interesting friend g, let by be the ball concentric with dq with radius 2/3 less than
the radius of dq, and let U, be the unit-radius ball centered at q. We now have a set of unit balls,
one for each interesting friend of o, whose centers lie at distance exactly 2/3 from the boundary
of the Swiss cheese C =B\ J q Pq- By Lemma 2.5, C has surface area O(r?), and by Lemma 2.6,
each unit ball U, contains (1) surface area of C. Since the unit balls are disjoint, it follows that
o has at most O(r?) interesting friends. O

Theorem 2.8. Let S be a set of points in IR> whose closest pair is at distance 2 and whose diameter
is 2A, and let v be any real number. There are O(A3/r) points in S with a Delaunay neighbor at
distance at least r.

Proof: Call a point far-reaching if it has a Delaunay neighbor at distance at least r, and let Q
be the set of far-reaching points. Let B be a ball of radius 2A containing S. For each q € Q, let
fq be a maximal empty ball containing q and its furthest Delaunay neighbor, and let by be the
concentric ball with radius 2/3 smaller than f,. By construction, each ball by has radius at least
1/2 —2/3. Finally, for any far-reaching point g, let Uy be the unit-radius ball centered at q. By
Lemma 2.5, the Swiss cheese C =B\ quQ by has surface area O(A3/r), and by Lemma 2.6, each
unit ball Uy contains (1) surface area of C. Since these unit balls are disjoint, there are at most
O(A3/r) of them. O
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Corollary 2.9. Let S be a set of points in IR® with spread A. The Delaunay triangulation of S has
complexity O(A%).

Proof: For all 1, let F(r) be the number of far-reaching points in S, :.e., those with Delaunay edges
of length at least r. From Theorem 2.8, we have F(r) = O(A3/r). By Theorem 2.7, if the farthest
neighbor of a point p is at distance between r and r + 1, then p has O(r?) Delaunay neighbors.
Thus, the total number of Delaunay edges is at most

A A A

> o) (Fr)—F(r+1))=> 0O(r)-F(r)=) 0(A%) =0(a").

=0 =0 =0

2.3 Conjectured Upper Bounds

We conjecture that the lower bounds in Theorem 2.4 are tight, but Corollary 2.9 is the best upper
bound known. Nearly matching upper bounds could be derived from the following conjecture,
using a divide and conquer argument suggested by Edgar Ramos (personal communication).

Let S be a well-separated set of points with closest pair distance 1, lying in two balls of radius A
that are separated by distance at least cA for some constant ¢ > 1. Call an edge in the Delaunay
triangulation of S a crossing edge if it has one endpoint in each ball.

Conjecture 2.10. Some point in S is an endpoint of O(A) crossing edges.
Lemma 2.11. Conjecture 2.10 implies that S has O(min{A3, An,n?}) crossing edges.

Proof: Theorem 2.8 implies that only O(A?) points can be endpoints of crossing edges. Thus, we
can assume without loss of generality that n = O(A?2). We compute the total number of crossing
edges by iteratively removing the point with the fewest crossing edges and retriangulating the
resulting hole, say by incremental flipping [27]. Conjecture 2.10 implies that we delete only O(A)
crossing edges with each point, so altogether we delete O(nA) = O(A3) crossing edges. Not all of
these edges are in the original Delaunay triangulation, but that only helps us. O

Theorem 2.12. Conjecture 2.10 implies that the Delaunay triangulation of n points in IR® with
spread A has complexity O(min{A3log A,nA,n?}).

Proof: Assume Conjecture 2.10 is true, and let S be an arbitrary set of n points with diameter A,
where the closest pair of points is at unit distance. S is contained in an axis-parallel cube C of
width A. We construct a well-separated pair decomposition of S [13], based on a simple octtree
decomposition of C. The octtree has O(log A) levels. At each level i, there are 8! cells, each a cube
of width A/2'. Our well-separated pair decomposition includes, for each level i, the points in any
pair of level-i cells separated by a distance between cA/2" and 2cA/2!. A simple packing argument
implies that any cell in the octtree is paired with O(1) other cells, all at the same level, and so
any point appears in O(log A) subset pairs. Every Delaunay edge of S is a crossing edge for some
well-separated pair of cells.

Lemma 2.11 implies that the points in any well-separated pair of level-i cells have O(A3/8%)
crossing Delaunay edges. Since there are O(8!) such pairs, the total number of crossing edges
between level-i cells is O(A3). Thus, there are O(A3log A) Delaunay edges altogether.
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Lemma 2.11 also implies that for any well-separated pair of level-i cells, the average number of
crossing edges per point is O(A/2'). Since every point belongs to a constant number of subset pairs
at each level, the total number of crossing edges at level i is O(nA/2!). Thus, the total number of
Delaunay edges is O(nA). O

This upper bound is still a logarithmic factor away from our lower bound construction when
A = o(y/n). However, our argument is quite conservative; all crossing edges for a well-separated
pair of subsets are counted, even though some or all of these edges may be blocked by other points
in S. A more careful analysis would probably eliminate the final logarithmic factor.

3 Nice Surface Data

Let ¥ be a smooth surface without boundary in IR3. The medial azis of X is the closure of the set
of points in IR? that have more than one nearest neighbor on X. The local feature size of a surface
point x, denoted Ifs(x), is the distance from x to the medial axis of £. Let S be a set of sample
points on X. Following Amenta and Bern [1], we say that S is an e-sample of ¥ if the distance
from any point x € L to the nearest sample point is at most ¢ - Ifs(x).

The first step in several surface reconstruction algorithms is to construct the Delaunay trian-
gulation or Voronoi diagram of the sample points. Edelsbrunner and Miicke [26] and Bajaj et al.
[7, 9] describe algorithms based on alpha shapes, which are subcomplexes of the Delaunay tri-
angulation; see also [34]. Extending earlier work on planar curve reconstruction [2, 32|, Amenta
and Bern [1, 3] developed an algorithm to extract a certain manifold subcomplex of the Delaunay
triangulation, called the crust. Amenta et al. [4] simplified the crust algorithm and proved that if S
is an e-sample of a smooth surface X, for some sufficiently small ¢, then the crust is homeomorphic
to X. Boissonnat and Cazals [12] and Hiyoshi and Sugihara [35] proposed algorithms to produce
a smooth surface using natural coordinates, which are defined and computed using the Voronoi
diagram of the sample points. Further examples can be found in [5, 6, 11, 16, 21].

We have already seen that even very regular e-samples of smooth surfaces can have super-linear
Delaunay complexity. In this section, we show that e-samples of smooth surfaces can have Delaunay
triangulations of quadratic complexity, implying that all these surface reconstruction algorithms
take at least quadratic time in the worst case.

3.1 Sample Measure

We will analyze our lower bound constructions in terms of the sample measure of a smooth
surface X, which we define as follows:
dx
uz) = | 5=
b2

1fs?(x)

Intuitively, the sample measure of a surface describes the intrinsic difficulty of sampling that surface
for reconstruction.? The next lemma formalizes this intuition.

Lemma 3.1. For any C? surface L and and ¢ < 1/5, every e-sample of ¥ contains Q(u(Z)/e?)
points.

2Ruppert and Seidel [39] use precisely this function—but with a different definition of local feature size—to
measure the minimum number of triangles with bounded aspect ratio required to mesh a planar straight-line graph.
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Proof: Let S be an arbitrary e-sample of ¥ for some ¢ < 1/5, and let n =|S|.

Amenta and Bern [1, Lemma 1] observe that the local feature size function is 1-Lipschitz, that
is, [ifs(x) — lfs(y)| < |xy| for any surface points X,y € X. Thus, for any point x € L, we have
Ixp| < elfs(x) < e(lfs(p) + Ixpl), so [xp| < 7% lfs(p), where p € S is the sample point closest to x.

It follows that we can cover X with spheres of radius 7= lfs(p) around each sample point p.
Call the intersection of X and the sphere around p the nezghborhood of p, denoted N(p). Similar

Lipschitz arguments imply that
1—2¢

Ifs(x) > s(p).

for any point x € N(p).

For any x € X, let n, denote the normal vector to X at x. Using the fact that local feature size
is at most the minimum radius of principal curvature, Amenta and Bern [1, Lemma 2] prove that
for any x,y € X where & = [xy|/1fs(x) < 1/3, we have Zn,n, < %. Thus,

€ U
Z <—< 1<
™IS T e 3
for any x € N(p). It follow that N(p) is monotone with respect to n,, so we can compute its
area by projecting it onto a plane normal to n,. Since the projection fits inside a circle of radius
7= Ufs(p), we have

& 2 & 2 2
area(N(p)) < ( : ls(p )) < ﬂ(]*s lfs(p)) =2r <] — lfs(p)> .

min cosZnyn, ~  cos(m/3)
xEN(p)

We can now bound the sample measure of each neighborhood as follows:3

area(N(p)) < 27 (75 is(p )2 27e? 507 5

N = < —
HN)) < min 1fs?(x) ~ (1 26 1fs(p ))2 (1—2¢)? 9 ¢
xEN(p)

Finally, since L is covered by n such neighborhoods, p(X) = O(ne?). O

We say that an e-sample is parsimonious if it contains O(p(Z)/e?) points, that is, only a
constant factor more than the minimum possible number required by Lemma 3.1.

3.2 Oversampling Is Bad

The easiest method to produce a surface sample with high Delaunay complexity is oversampling,
where some region of the surface contains many more points than necessary. In fact, the only
surface where oversampling cannot produce a quadratic-complexity Delaunay triangulation is the
sphere, even if we only consider parsimonious samples.

The idea behind our construction is to find two skew (¢.e., not coplanar) lines tangent to the
surface, place points on these lines in small neighborhoods of the tangent points to create a complete
bipartite Delaunay graph, and then perturb the points onto the surface. The neighborhoods must
be sufficiently small that the perturbation does not change the Delaunay structure. Also, the
original tangent lines must be positioned so that the resulting Delaunay circumspheres are small,
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Figure 6. Parsimoniously oversampling a non-spherical surface.

so that we can uniformly sample the rest of the surface without destroying the local quadratic
structure. See Figure 6.

To quantify our construction, we first establish a technical lemma about perturbations. Let
P ={p1,p2,...,Pm} and Q ={q1,92,...,qm} be sets of m > 4 evenly spaced points on two skew
lines {p and {o. Every segment p;q; is an edge in the Delaunay triangulation of P U Q. An 7-
perturbation of PUQ is a set PUQ = {p1,P2,...,Pm, d1,d2,-.., Gm} such that [pipi| < r and
lg;G;] < v for all 1 < i,j < n. Continuity arguments imply that if r is sufficiently small, the
Delaunay triangulation of P U Q also has quadratic complexity.

Let 6 denote the distance between successive points in both P and Q. For each point p; € P
and q; € Q, let (3;; denote the empty ball whose boundary is tangent to {p at p; and tangent to
{q at gj, and let p denote the largest radius of any bitangent sphere {3;;.

Lemma 3.2. Let P U Q be an arbitrary r-perturbation of P U Q, where v < 8%/9p. Every pair of
points P; and §; lies on an empty sphere with radius at most 2p and thus are neighbors in the
Delaunay triangulation of P U Q.

Proof: Since m > 4, we observe that p > . The distance between any point p; to any bitangent
sphere By; with k # 1 is at least /62 + p2 — p > 6%/3p. Let B be the ball concentric with Bi;
with radius &%/9p larger than ij. This ball contains p; and {; but excludes every other point in
PuU Q, and thus contains an empty circumsphere of P;d; with radius at most p + 52/9p < 2p. O

Theorem 3.3. For any non-spherical C? surface ¥ and any ¢ > 0, there is a parsimonious e-sample
of ¥ whose Delaunay triangulation has complexity Q(n?), where n is the number of sample points.

Proof: Let S be any parsimonious ¢-sample of X, and let m = |S|. Let o be a sphere, centered at a
point x € X, with radius p < Ifs(x)/36m?, such that every point in S has distance at least 6p from
0, and the intersection curve y = 0N X is not planar (2.e., not a circle). Such a sphere always exists
unless X is itself a sphere; for example, we could take x to be any point whose principal curvatures
are different.

Let £, and {4 be skew lines tangent to y at points p and g, respectively; these lines must exist
since 'y does not lie in a plane. Let P = {p1,p2,...,pm} and Q = q1,4d2,...,dm be sets of evenly
spaced points on {,, and {4, respectively, in sufficiently small neighborhoods of p and q that every
bitangent sphere 3;; (see above) has radius less than 2p. Such neighborhoods exist by continuity

3We can obtain slightly better constants using the fact that every surface point lies in the neighborhood of its
closest sample point; see [1, Lemma 3].
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arguments. Let § denote the distance between successive points in P and Q and assume without
loss of generality that md < p/2. Finally, define PUQ = {{p1,P2,...,Pm, d1,d2,...,dm} C L where
Pi and §; are the surface points closest to p; and gj, respectively.

Without loss of generality, PUQ U P U Q lies in a ball § of radius 2p centered at x. Lipschitz
arguments imply that £ N & lies between two balls of radius R = Ifs(x) — 4p tangent to X at p (or
at q). Thus, any point in P (or in Q) has distance at most

(md)?  2(més)? 52

2y R2_R s
(md)*+ STR S B 18

from X, since p < Ifs(x)/36m?. Lemma 3.2 now implies that for all i,j, there is a ball of radius less
than 4p that contains p; and {; and excludes every other point in PU Q. Since every other point
in S has distance at least 6p away from o, this ball also excludes every point in S.

We conclude that SUP U Q is a parsimonious ¢-sample of £ consisting of n = 3m points whose
Delaunay triangulation has complexity Q(n?). O

The reconstruction algorithm of Amenta et al. [4] extracts a surface from a subset of the
Delaunay triangles of the sample points. Their algorithm estimates the surface normal at each
sample point p using the Voronoi diagram of the samples. The cocone at p is the complement of
a very wide double cone whose apex is p and whose axis is the estimated normal vector at p. The
algorithm extracts the Delaunay triangles whose dual Delaunay edges intersect the cocones of all
three of its vertices, and then extracts a manifold surface from those cocone triangles. Usually only
a small subset of the Delaunay triangles pass this filtering phase, but our construction shows that
there are Q(n?) cocone triangles in the worst case.

3.3 Uniform Sampling Can Still Be Bad

Unfortunately, oversampling is not the only way to obtain quadratic Delaunay triangulations. Let
S be a set of sample points on the surface £. We say that S is a uniform e-sample of ¥ if the
distance form any point x € X to its second-closest sample point is between (¢/c) lfs(x) and ¢ lfs(x),
for some constant ¢ > 2.* We easily verify that a uniform e-sample is in fact an e-sample. A packing
argument similar to the proof of Lemma 3.1 implies that uniform e-samples are parsimonious.

Lemma 3.4. For anyn and € > +/1/n, there is a two-component surface ¥. and an n-point uniform
e-sample S of ¥, such that the Delaunay triangulation of S has complexity Q(n?%e?).

Proof: The surface X is the boundary of two sausages L and X, each of which is the Minkowski
sum of a unit sphere and a line segment. Specifically, let

x=U+(—w,0,d+ 1), (w,0,d+1) and
Ly=U+(0,—w,—d—1),(0,w,—d—1),

where U is the unit ball centered at the origin, w = ne?, and d = 4w/e = 4ne. The local feature
size of every point on L is 1, so any uniform e-sample of £ has @((w+ 1)/e?) = ©(n) points.

4Equivalently, following Dey et al. [22], we could define an e-sample to be uniform if |pq|/lfs(p) > ¢/c for any
sample points p and q, for some constant ¢ > 1.
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Define the seams oy and oy as the maximal line segments in each sausage closest to the xy-plane:

Ox = (_W) O) d)) (W) O) d) and
Oy = (O) —W, _d)) (O,W, _d)

Our uniform e-sample S contains 2w/e + 1 points along each seam:

pi = (ig,0,d)  for all integers —w/e <1< w/e, and
q; = (0,je,—d) for all integers —w/e <j <w/e.

The Delaunay triangulation of these ©(w/e) = ®(ne) points has complexity @(w?/e?) = O(n?e?).

Let (3;; be the ball whose boundary passes through p; and ¢; and is tangent to both seams.
The intersection 2, N By; is a small oval, tangent to oy at p; and symmetric about the plane x = ie.
See Figure 7(a).

cij = (ie,je, (j2 —i%)e?/4d)

(b)

Figure 7. (a) Two sausages and a sphere tangent to both seams. (b) Computing the width of the intersection oval.

We claim that this oval lies in a sufficiently thin strip around the seam of X, that we can
avoid it with the other sample points in S. We compute the width of the oval by considering the
intersection of Ly and 3;; with the plane x = ie. Simple calculations imply that (3;; is centered
at the point ¢y = (ig,je, (72 — i%)e?/4d). Let a; = (ie,0,d + 1). The width of the intersection
oval,measured along the surface of X, is exactly 2/p;ajci;. From Figure 7(b), we see that

je
(d+1)—(j2 —1i?)e?/4d

tan Zpiaicy; =

Thus, we can bound the width of the oval as follows:

_ 4dje
2/piaicy; = 2tan!
Pithicy = 2tan <4d(d T+ 2 - jZ)EZ)

< 8dje
4d? + (i2 —j2)e?
8dw
< 3d7—2w?
8w

<?:£'
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We conclude that ¥, N (i lies entirely within a strip of width less than 2¢ centered along the
seam Ox. A symmetric argument gives the analogous result for X, N 3;;. We can uniformly sample
2 so that no sample point lies within either strip except the points we have already placed along
the seams. Each segment piq; is an edge in the Delaunay triangulation of the sample, and there
are Q(w?/e?) = Q(n?e?) such segments. O

Theorem 3.5. For any n and any ¢ > /1/n, there is a connected surface X. and an n-point uniform
e-sample S of ¥, such that the Delaunay triangulation of S has complexity Q(n?e?).

Proof: Intuitively, we produce the surface £ by pushing two sausages into a spherical balloon.
These sausages create a pair of conical wedges inside the balloon whose seams lie along two skew
lines. The local feature size is small near the seams and drops off quickly elsewhere, so a large frac-
tion of the points in any uniform sample must lie near the seams. We construct a particular sample
with points exactly along the seams that form a quadratic-complexity triangulation, similarly to
our earlier sausage construction. Our construction relies on several parameters: the radius R of the
spherical balloon, the width w and height h of the wedges, and the distance d between the seams.

Figure 8. A smooth surface with a bad uniform e-sample, and a closeup of one of its wedges.

Each wedge is the Minkowski sum of a unit sphere, a right circular cone with height h centered
along the z-axis, and a line segment of length w parallel to one of the other coordinate axes. A
wedge can be decomposed into cylindrical, spherical, conical, and planar facets. The cylindrical and
spherical facets constitute the blade of the wedge, and the seam of the blade is the line segment
of length w that bisects the cylindrical facet. The local feature size of any point on the blade is
exactly 1, and the local feature size of any other wedge point is 1 plus its distance from the blade.
Straightforward calculations imply that the sample measure of each wedge is O(w + logh + 1).

A first approximation T of the surface X is obtained by removing two wedges from a ball of
radius R centered at the origin. One wedge points into the ball from below; its seam is parallel to
the x-axis and is centered at the point (0,0,—R + h). The other wedge points into the ball from
above; its seam is parallel to the y-axis and is centered at (0,0,R—h). Let d = 2R— 2h — 2 denote
the distance between the wedges. Our construction has 1 < w < d < h, so R < 3h.

To obtain the final smooth surface X, we round off the sharp edges by rolling a ball of radius
h/4 inside b3 along the wedge/balloon intersection curves. We call the resulting warped toroidal
patches the sleeves. The local feature size of any point on the sleeves or on the balloon is at least
h/4. The surface area of the sleeves is O(R?) = O(h?), so the sleeves have constant sample measure.
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The local feature size of other surface points changes only far from the blades and by only a small
constant factor. Thus, p(X) = O(w + logh + 1). To complete the construction, we set w = ne?,
d =4neg, and h = 20ne. See Figure 8.

Finally, we construct a uniform e-sample S with @(w/¢) sample points evenly spaced along each
seam and every other point at least ¢ away from the seams. Setting h > 5d (and thus R > 10d)
ensures that the Delaunay spheres [3;; between seam points do not touch X except on the blades.
By the argument in Lemma 3.4, there are Q(w?/e?) = Q(n?e?) Delaunay edges between seam

points. O

3.4 Some Surfaces Are Just Evil

In this section, we describe a family of surfaces for which any parsimonious ¢-sample has a Delaunay
triangulation of near-quadratic complexity. First we give a nearly trivial construction of a bad
surface with several components, and then we join these components into a single connected surface
using a method similar to Theorem 3.5.

Lemma 3.6. For any n and any ¢ > /1/n, there is a smooth surface L such that the Delaunay
triangulation of any parsimonious e-sample of ¥ has complexity Q(n?e*), where n is the size of

the sample.

Proof: Let P be a set containing the following k points:

Pi= (ik,O,kz) for all integers —k/4 <1 < k/4, and
q; = (0,jk, —k?) for all integers —k/4 <j < k/4.

We easily verify that every pair of points p; and q; lie on the boundary of a ball 3;; with every
other point in P at least unit distance outside. (See Lemma 3.2.)

Let £ = UpeP U,, where U, is the unit-radius sphere centered at p. Clearly, lfs(x) = 1
for every point x € X, so u(X) = 4mk. Let S be an arbitrary parsimonious e-sample of X, let
n = |S| = O(k/e?), and for any point p € P, let Sp = SN U, be the sample points on its unit
sphere.

Choose an arbitrary pair pi, q; € P. By construction, (3;; contains only points in Sy, and Sg;.
Shrink (;; about its center until (without loss of generality) it has no points of S, in its interior.
Choose some point p’ € Sp, on the boundary of the shrunken ball, and then shrink the ball
further about p’ until it contains no point of Sy,. The resulting ball has p’ and some q’ € S4, on
its boundary, and no points of S in its interior. Thus, p’ and q’ are neighbors in the Delaunay
triangulation of S. There are at least Q(k?) = Q(n?e*) such pairs. O

To create a connected surface where good sample has a complicated Delaunay triangulation,
we add ‘teeth’ to our earlier balloon and wedge construction. Unfortunately, in the process, we
lose a polylogarithmic factor in the Delaunay complexity.

Theorem 3.7. For any n and any ¢ < 4/1/n, there is a smooth connected surface ¥ such that
the Delaunay triangulation of any parsimonious ¢-sample of £ has complexity Q(n?e*/log?(ne?)),
where n is the size of the sample.
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Proof: Asin Theorem 3.5, our surface & contains two wedges, but now each wedge has a row of small
conical teeth. Our construction relies on the same parameters R,w, h of our earlier construction.
We now have additional parameter t, which is simultaneously the height of the teeth, the distance
between the teeth, and half the thickness of the ‘blade’ of the wedge.

Our construction starts with the (toothless) surface described in the proof of Theorem 3.5, but
using a ball of radius t instead of a unit ball to define the wedges. We add w/t evenly-spaced teeth
along the blade of each wedge, where each tooth is the Minkowski sum of a unit ball with a right
circular cone of radius t. Each tooth is tangent to both planar facets of its wedge. To create the
final smooth surface X, we roll a ball of radius t/3 over the blade/tooth intersection curves. The
complete surface has sample measure ©@((w/t)(1+logt)+logh+ 1). Finally, we set the parameters
w =12, h =13, and R = 20t3, so that pu(Z) = O(tlogt).

Let S be a parsimonious e-sample of ¥, and let n = |S| = O((tlogt)/e?). For any pair of teeth,
one on each wedge, there is a sphere tangent to the ends of the teeth that has distance Q(1) from
the rest of the surface. We can expand this sphere so that it passes through one point on each
tooth and excludes the rest of the points. Thus, the Delaunay triangulation of S has complexity
Q(t2) = Q(n2e?/log? (ne?)). O

3.5 Randomness Doesn’t Help Much

Golin and Na [33] proved that if S is a random set of n points on the surface of a convex polytope
with a constant number of facets, then the expected complexity of the Delaunay triangulation of S
is O(n). Unfortunately, this result does not extend to nonconvex objects, even when the random
distribution of the points is proportional to the sample measure.

Theorem 3.8. For any n, there is a smooth connected surface X, such that the Delaunay trian-
gulation of n independent uniformly-distributed random points in £ has complexity ®(n?/ log2 n)
with high probability.

Proof: Consider the surface X consisting of @(n/logn) unit balls evenly spaced along two skew line
segments, exactly as in the proof of Theorem 3.6, with extremely thin cylinders joining them into
a single connected surface resembling a string of beads. With high probability, a random sample
of n points contains at least one point on each ball, on the side facing the opposite segment. Thus,
with high probability, there is at least one Delaunay edge between any ball on one segment and
any ball on the other segment. O

Theorem 3.9. For any n, there is a smooth connected surface ¥, such that the Delaunay triangu-
lation of n independent random points in ¥, distributed proportionally to the sample measure, has
complexity ©(n?/log* n) with high probability.

Proof: Let X be the surface used to prove Theorem 3.7, but with (n/ log2 n) teeth. With high
probability, a random sample of £ contains at least one point at the tip of each tooth. O

4 Conclusions

We have derived new upper and lower bounds on the complexity of Delaunay triangulations under
two different geometric constraints: point sets with sublinear spread and good samples of smooth
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surfaces. Our results imply that with very strong restrictions on the inputs, most existing surface
reconstruction algorithms are inefficient in the worst case.

Our results suggest several open problems, the most obvious of which is to tighten the spread-
based bounds. We conjecture that our lower bounds are tight. Even the special case of dense point
sets is open.

Another natural open problem is to generalize our analysis to higher dimensions. Dey et al. [22]
describe a generalization of the cocone algorithm [4] that determines the dimension of a uniformly
sampled manifold (in the sense of Section 3.3) in a space of any fixed dimension. Results developed
in a companion paper [29] imply that for any n and A > /n, there is a set of n points in R¢
with spread A whose Delaunay triangulation has complexity Q(nAl4/21-1). The techniques used in
Section 2.2 generalize easily to prove that any d-dimensional Delaunay triangulation has O(A4+7)
edges, but this implies a very weak bound on the overall complexity. We conjecture that the
complexity is always O(A4)—in particular, O(n) for all dense point sets—and can only reach the
maximum Q(nl4/2]) when A = Q(n).

Our bad surface examples are admittedly quite contrived, since they have areas of very high
curvature relative to their diameter. An interesting open problem is whether there are bad surfaces
with smaller ‘spread’, i.e., ratio between diameter and minimum local feature size. What is the
worst-case complexity of the Delaunay triangulation of good surface samples as a function of the
spread and sample measure of the surface? Is there a single surface such that for any ¢, there is
a uniform e-sample with quadratic Delaunay complexity, or (as I conjecture) is the cylinder the
worst case? Even worse, is there a “universally bad” surface such that every uniform sample of
has super-linear Delaunay complexity?

Our surface results imply that most Delaunay-based surface reconstruction algorithms can be
forced to take super-linear time, even for very natural surface data. It may be possible to improve
these algorithms by adding a small number of Steiner points in a preprocessing phase to reduce the
complexity of the Delaunay triangulation. In most of our bad surface examples, a single Steiner
point reduces the Delaunay complexity to O(n). Bern, Eppstein, and Gilbert [10] show that any
Delaunay triangulation can be reduced to O(n) complexity in O(nlogn) time by adding O(n)
Steiner points; see also [15]. Unfortunately, the Steiner points they choose (the vertices of an
octtree) may make reconstruction impossible. In order to be usable, any new Steiner points must
either lie very close to or very far from the surface, and as our bad examples demonstrate, both
types of Steiner points may be necessary. Boissonnat and Cazals (personal communication) report
that adding a small subset of the original Voronoi vertices as Steiner points can significantly reduce
the complexity of the resulting Voronoi diagram with only minimal changes to the smooth surface
constructed by their algorithm [12].

After some of the results in this paper were announced, Dey et al. [20] developed a surface re-
construction algorithm that does not construct the entire Delaunay triangulation. Their algorithm
runs in O(nlogn) time if the sample is locally uniform, meaning (loosely) that the density of the
sample points varies smoothly over the surface, but still requires quadratic time in the worst case.
Even more recently, Ramos [38] discovered a fast algorithm to extract a locally uniform sample
from any e-sample, thereby producing a surface reconstruction algorithm that provably runs in
O(nlogn) time.

Finally, are there other natural geometric conditions under which the Delaunay triangulation
provably has small complexity?
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