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Abstract

We show that every set ofn points in general position has a minimum pseudo-triangulation whose maximum
vertex degree is five. In addition, we demonstrate that every point set in general position has a minimum pseudo-
triangulation whose maximum face degree is four (i.e., each interior face of this pseudo-triangulation has at most
four vertices). Both degree bounds are tight. Minimum pseudo-triangulations realizing these bounds (individually
but not jointly) can be constructed in O(n logn) time.
 2002 Elsevier Science B.V. All rights reserved.

Keywords: Pseudo-triangulation; Degree bounds; Vertex degree; Face degree

1. Introduction

A pseudo-triangle is a planar polygon that has exactly three convex vertices, calledcorners, with
internal angles less thanπ . As illustrated in Fig. 1, three concave chains, calledsides, join the three
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Fig. 1. Pseudo-triangles.

corners. Apseudo-triangulation for a setS of n points in the plane is a partition of the convex hull ofS

into pseudo-triangles whose vertex set is exactlyS.
Pseudo-triangulations, also called geodesic triangulations, have been studied for convex sets and for

simple polygons in the plane because of their applications to visibility [11,12] and ray shooting [4,6].
Recently, they have been used in a number of kinetic data structures (KDSs) for collision detection among
moving polygons in the plane [1,8,9]; more specifically they provide a sparse tessellation of the free space
between moving polygons that is easily maintained by edge swaps as polygons move. Furthermore, one-
degree-of-freedom mechanisms induced by minimum pseudo-triangulations have been shown to provide
efficient primitives for robot arm motion planning problems [14].

We identify the class ofminimum pseudo-triangulations of a given point set as those that have the
minimum number of edges or, equivalently, the minimum number of pseudo-triangle faces (Euler’s
relation establishes the equivalence). The minimum pseudo-triangulations are of particular interest in
the applications above, and also exhibit several geometric and combinatorial properties that make them
interesting objects of study in their own right [13,14]. Note that a pseudo-triangulation is calledminimal
(as opposed to minimum) if the union of any two faces is not a pseudo-triangle [1]. In general, all
minimum pseudo-triangulations are also minimal, but the opposite is not necessarily true (see Fig. 2
(right) for an example of a minimal but not minimum pseudo-triangulation).

Since a pseudo-triangulation is a planar graph, we can borrow graph terminology: thedegree of a
vertex is the number of edges incident on it. Thedegree of a face is the number of edges that bound it.
Any non-hull edge is adjacent to twoneighboring pseudo-triangles.

Even though a standard triangulation has average vertex degree O(1), there are sets ofn points in the
plane for which each possible triangulation contains a vertex of degreen − 1 (see Fig. 1(iv)). In contrast,
we show in Section 3 that every point set in the plane has a minimum pseudo-triangulation of maximum
vertex degree 5 (and that such a pseudo triangulation can be constructed for a set ofn points in O(n logn)

time). In Section 4 we show that this result is the best possible by demonstrating a set of points for which
any pseudo-triangulation has a vertex of degree at least five.

Since minimum pseudo-triangulations have lower average edge degree than general pseudo-
triangulations (in particular, triangulations), their average face degree is correspondingly higher. Thus,
it is natural to ask whether for every set of points there exists a minimum pseudo-triangulation with a
bounded face degree. In Section 5, we describe a construction that yields a minimum pseudo-triangulation
in which each face contains either three or four vertices (see Fig. 1(i) and 1(iii)). This construction can
also be executed for a set ofn points in O(n logn) time.

In the next section we set out some basic properties of minimum pseudo-triangulations. In Section 6
we conclude with some remarks and open problems.
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2. Minimum pseudo-triangulations

Let us assume thatS is a set ofn points in general position. In particular, no three points inS are
collinear (degenerate point sets can be handled by applying a symbolic perturbation).

Minimum pseudo-triangulations have several equivalent definitions or characterizations (cf. [11,14]).
In particular, minimum pseudo-triangulations have exactlyn − 2 pseudo-triangles and 2n − 3 edges.
Another characterization that relates to theacyclicity property described by Streinu [14] is captured in
the following:

Lemma 1. A pseudo-triangulation of S is minimum if and only if every point p ∈ S has one incident
region (either a pseudo-triangle or the exterior face) whose angle at p is greater than π .

Proof. For a pseudo-triangulation withn vertices andt pseudo-triangles, it follows from Euler’s relation
that the number of edgese = (t + 1) + n − 2, where unity is added to count the infinite face. The
total vertex degree(2e) can be bounded from above by considering faces: there are 3t corners, and at
mostn non-corners, since non-corners have angles strictly greater thanπ (due to our general position
assumption). Thus 2e = 2t +2n−2 � 3t +n, orn−2 � t . Observe that for equality to hold, every vertex
must have exactly one angle greater thanπ . ✷

Every set ofn distinct points in the plane has a canonical minimum pseudo-triangulation (referred
to asincremental pseudo-triangulation in [1]; see Fig. 2 (left)). To construct this canonical minimum
pseudo-triangulation, first sort the points byx-coordinate, breaking ties byy-coordinate. Then form a
triangle with the first three points, and for each subsequent point, add one pseudo-triangle by creating
two tangents to the convex hull. The minimality of the resulting pseudo-triangulation is immediate from
Lemma 1.

One cannot always obtain a minimum pseudo-triangulation by simply removing edges. A simple wheel
graph, such as a pentagon with one additional vertex in the middle connected to all others (see Fig. 2
(right)), is an example for which removing any non-hull edge leaves a convex quadrilateral.

However, for any point set we can always find a minimum pseudo-triangulation that realizes the
minimum maximum vertex degree. If the degree is five our construction gives a minimum pseudo-
triangulation. If the degree is four a minimal pseudo-triangulation is also minimum as the following
lemma shows. In subsequent sections (as the reader will no doubt be delighted to learn) we use the term
pseudo-triangulation to refer to a minimum pseudo-triangulation.

Fig. 2. Canonical minimum pseudo-triangulation (left), minimal but not minimum pseudo-triangulation (right).
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Lemma 2. Any minimal pseudo-triangulation with maximum vertex degree at most 4 is a minimum
pseudo-triangulation.

Proof. Assume we are given a pseudo-triangulation of maximum vertex degree at most 4. If the given
pseudo-triangulation is not minimum then, by Lemma 1, it must have a pointp that does not have an
incident region whose angle atp is greater thanπ . Sincep has degree at most 4, we can find a line
throughp that separates exactly one of its incoming edges from the others. We will now argue that
removing this edgee from the pseudo-triangulation will merge its two adjacent pseudo-trianglesPT left

andPT right into one pseudo-trianglePT. Thus, the given pseudo-triangulation was not minimal.
First of all, the pointp is a corner in bothPT left and PT right by construction and the removal ofe

will create an angle greater thanπ at p in PT. Second, the other endpointp′ of e is a corner in at least
one of PT left and PT right and the removal ofe will only then create a corner atp′ in PT if p′ was a
corner in both. This implies that the total number of corners inPT is exactly three and hencePT is a
pseudo-triangle. ✷

3. Pseudo-triangulations of bounded vertex degree

We describe a recursive construction of a pseudo-triangulation of a setS of n points. We can begin
with polygonP as the convex hull ofS, since every pseudo-triangulation must use the edges ofP . We
define thesize s(P ) of a convex polygonP as the number of points ofS inside or on the boundary ofP .
We letB(P ) ⊂ S denote the points on the boundary.

At each step of our recursive construction we apply one of two operations toP to obtain polygons of
smaller size. The first operation uses a pseudo-triangle topartition P into two convex polygons,P1 and
P2 that share exactly one pointp on B(P ) and that can be separated by a vertical line throughp (see
Fig. 3(i)). This implies that max{s(P1), s(P2)} � s(P ) − 1. The second operationprunes a point from
B(P ) and forms a convex polygonP ′ with s(P ′) = s(P ) − 1 (see Fig. 3(ii)).

Now consider a polygonP that describes a subproblem. Since no vertex in the final pseudo-
triangulation can have degree greater than five, the incoming edges incident with points onB(P )

constrain the choice of pseudo-triangulation edges for the interior ofP . We define theload of a pointp,
denoted byl(p), to be the degree ofp minus two (for example a point of degree four has a load of two
and a point of degree two has load zero). Note that degree always refers to the degree of a point with

Fig. 3. The operations: (i) partition and (ii) prune. Note that the shaded pseudo-triangles do not contain any points in their
interior.
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respect to the current version of the pseudo-triangulation that we are building. The load of a polygonP ,
denoted byl(P ), is accordingly defined as the sum of the loads of the vertices onB(P ).

We show how to implement the reduction step so as to maintain the following invariants for all
polygonsP that arise as recursive subproblems:

Invariant 3. For all p ∈ B(P ), l(p) � 3. Furthermore, at most one point p ∈ B(P ) has l(p) = 3.

Invariant 4. If l(p) � 2 for all p ∈ B(P ), then l(P ) � 5. Otherwise l(P ) � 6.

Both invariants are trivially true for the convex hull of the set of points.
Let us now assume that we are given a convex polygonP that satisfies both invariants. The appropriate

operation to choose depends on the distribution of the load. There are two cases:
(1) All points onB(P ) have load at most one⇒ partition.
(2) B(P ) has points of load two or three⇒ prune.
The following sections explain the two cases and their associated operations in detail and illustrate

how the invariants are maintained.

3.1. Partition

Assume we are given a convex polygonP that satisfies both invariants and has boundary points of
load at most one. This implies thatP contains at most five points of load one on its boundary.

If P contains 5 vertices of load one on its boundary, then we choose a pointp ∈ B(P ) with l(p) = 1
that has the medianx-coordinate among all such points. IfP has less than 5 vertices of load one on its
boundary, then we are free to choose any pointp that is notx-extreme onB(P ) with the property that at
most two vertices of load one lie on either side of a vertical line throughp. To simplify our algorithm we
treatp as a point of load one (ifp does not have any load then this implies that the final load ofp after
the termination of our algorithm is at most 4).

We now splitP by a vertical linelp throughp and form two convex polygonsP1 andP2 that consist
of the points ofP that lie on the left and on the right oflp respectively (see Fig. 4). Both polygons
containp, which we now regard as a point of load 3.

The polygonP1 contains exactly one point of load 3, namelyp. This satisfies Invariant 3 and implies
that to satisfy Invariant 4,l(P1) has to be less or equal to 6. This is true, since in addition top, P1 contains
at most two more points of load 1 on its boundary and the convex hull only contributes an additional load
of 1. The same holds forP2.

Fig. 4. Partitioning the polygonP (each number indicates maximum total load at a point or a chain).
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Fig. 5. Pruning a high degree vertex.

3.2. Prune

Assume that we are given a convex polygonP that satisfies both invariants and has at least one point
of load two or three.

Let pmax be the point onB(P ) of the highest load. LetP ′ denote the polygon formed by pruningpmax

(see Fig. 5). Note that the pseudo-triangle formed bypmax, its two neighbours, and part of the convex
hull of P ′ has no points in its interior.

The load ofP ′ is l(P ′) = l(P ) − l(pmax) + 2 � l(P ), since the new convex hull edges add 2 to the
load ofP ′, butpmax is a point of load at least 2. Specifically, ifl(pmax) = 3 thenl(P ′) = l(P ) − 3+ 2 �
6− 3+ 2� 5 and if l(pmax) = 2 thenl(P ′) = l(P ) − 2+ 2� 5− 2+ 2� 5, i.e.,l(P ′) � 5 always holds
which implies that Invariant 4 is satisfied.

If l(pmax) = 3 then there was at most one point of load 2 onB(P ), all other points must have been of
load 1 or less. This implies that at most one of the boundary neighbors ofpmax had load 2 and therefore
at most one point of load 3 is created by the new convex hull edges.

If l(pmax) = 2 thenpmax is not necessarily uniquely defined, but Invariant 4 implies that in this case
there are at most two points of load 2. Pruning removes one of these and increments the load of its
neighbours, leaving at most one point of load 3.

3.3. Analysis

At this point we have assembled all the necessary facts to prove the following theorem:

Theorem 5. The recursive construction presented in this section results in a minimum pseudo-
triangulation of vertex degree at most 5.

Proof. As we have shown in Section 3.1 and 3.2, every step of the recursion maintains both Invariant 3
and 4. Furthermore the base case of the recursion—a polygon with two points—is trivially pseudo-
triangulated. The theorem then follows from Invariant 3 and Lemma 1.✷
3.4. Implementation and runtime analysis

To implement our procedure, we would like to maintain convex hulls under the operations of deletion
of a point and partitioning by a vertical line. The hull tree of Hershberger and Suri [7] is a variant of the
divide-and-conquer hull structure of Overmars and van Leeuwen [10] that supports both operations in
amortized O(logn) time apiece. Recent advances in algorithms for dynamic hull maintenance by Chan
[3] and by Brodal and Jacob [2] also support insertion operations, but take slightly more time.
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We briefly sketch the idea of the hull tree construction, use and analysis [7]. Sort the pointsS by
x coordinate, breaking ties byy coordinate. We will store the upper and lower hulls ofS in separate hull
trees. Construct a binary tree representing the upper hull by a balanced, bottom-up merge: each node
stores the common tangent of the upper hulls of its two children. As an accounting device, each point is
assigned a number of credits equal to the number of tangents directly above it. Since the tree is balanced,
this is at most logn credits per point.

When a point is deleted, then any tangents that used that point must be recomputed. These tangents
can be identified in O(logn) time by walking down the tree, and can be recomputed in additional
time proportional to the number of new points that are exposed on the hull at that subtree—this
cost can be paid by credits that were assigned when the tree was constructed. When the tree is
partitioned by any vertical line, the operation is similar: O(logn) is spent on the root-to-leaf path to
the partitioning line, then tangents are recomputed at a cost that is charged to points exposed to the hull
of a subtree.

Theorem 6. For any set S of n points in the plane, a minimum pseudo-triangulation of S with maximum
vertex degree 5 can be computed in O(n logn) time.

4. A point set that requires vertex degree 5

This section presents an example that demonstrates that the upper bound presented in the preceding
section is the best possible. Specifically,

Lemma 7. Any pseudo-triangulation of the 12 points of Fig. 6 has a vertex of degree at least 5.

Proof. Suppose, for the sake of deriving a contradiction, that we have a pseudo-triangulation of degree 4.
One pseudo-triangle, shown shaded in Fig. 6, will use the center point as a non-corner. All other pseudo-
triangles will be triangles, since no other internal angles are greater thanπ . The bound on vertex degree
implies that at most three (pseudo-)triangles can use the center as a corner, and that at most three vertices
can be between the two corners of the shaded pseudo-triangle that are adjacent to the center point, as
shown in the figure.

Fig. 6. Lower bound construction.
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Any line through the center point has at least 5 points on each side, so no edges of the shaded pseudo-
triangle are convex hull edges, and each of its three corners has vertex degree at least 4. But in order to
complete the triangulation outside the shaded pseudo-triangle, at least one edge must be connected to
one of these corners.✷

5. Pseudo-triangulations of bounded face degree

It is particularly important in this section to recall that the term pseudo-triangulation refers tominimum
pseudo-triangulations. We describe an iterative construction for a pseudo-triangulation for a set of points
in general position. First we form and triangulate the convex hull of the set of points (note that every
triangulation is a minimum pseudo-triangulation for a set of points in convex position). Then we insert
each internal point in turn into the pseudo-triangulation. To insert a point into a triangle we simply
connect two arbitrary vertices of the respective triangle to the new vertex (see Fig. 7).

To insert a point into a quadrilateral, we observe that the extensions of the edges that form the side of
the pseudo-triangle that consists of two edges partition the pseudo-triangle into three regions (see Fig. 8).
We choose two of the vertices of the pseudo-triangle depending on which region the point falls into and
connect them to the new vertex.

It is not difficult to see how the incremental procedure described above can be implemented, using
standard data structures, to run in time O(n logn) for point setsS of sizen. Constructing the convex hull
of S, triangulating its interior and building a point location structure for the resulting triangulationT are
all standard procedures that take O(n) time after the setS has been sorted (cf. [5]). It remains to show
how to insert the interior points into the incrementally changing pseudo-triangulation in O(logn) time per
point. Since the host triangle inT can be determined in O(logn) time by planar point location, it suffices
to observe that in each triangleT of T , if the points are inserted in order of increasingx-coordinate, then
the pseudo-triangles that partitionT , when restricted to points withx-coordinate greater than the most
recently inserted point, form a sequence of linearly separable slabs. Thus the associated dynamic point
location problem is essentially one-dimensional and can be implemented by straightforward modification
of any one of the many optimal dynamic dictionary search structures.

Theorem 8. For any set S of n points in the plane, a minimum pseudo-triangulation of S, using pseudo-
triangles with at most four vertices, can be constructed in O(n logn) time.

Fig. 7. Inserting a vertex into a triangle.

Fig. 8. Inserting a vertex into a quadrilateral.
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Fig. 9. Minimum vertex-degree and minimum face-degree pseudo-triangulations.

6. Remarks and open problems

It is natural to ask if the upper bounds on vertex degree and face degree of pseudo-triangulations can
be realized simultaneously. Fig. 9 illustrates the maximum-vertex-degree-constrained and the maximum-
face-degree-constrained pseudo-triangulations (as constructed by the procedures of this paper) for a
common point set. The obvious generalization of this example can be used to show a tradeoff between
maximum vertex degree and maximum face degree of minimum pseudo-triangulations. Specifically, there
exist point sets of sizen for which any minimum pseudo-triangulation has a vertex degree and face degree
whose product is�(n).

It remains an open problem to find an efficient algorithm to determine, for a given point set, a minimum
pseudo-triangulation of minimum maximum vertex degree. Dynamic and kinetic versions of the bounded
degree pseudo-triangulation problem are also of interest.
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