| et CS 5633 -- Spring 2010

[W :
“\‘ i

ALGORITHMS

1 il
|
\\"l ——
. “ THOMAS H. CORMEN
CHARLES E LEISERSON
RKONALD L. RIVEST

CLIFPORD STEITN

Graphs

Carola Wenk

Slides courtesy of Charles Leiserson with
changes and additions by Carola Wenk

3/25/10 CS 5633 Analysis of Algorithms

: G 0. RITHMS .
“ <" Graphs (review)
Definition. A directed graph (digraph)
G = (V, E) 1s an ordered pair consisting of
* a set I of vertices (singular: vertex),
caset £ V' x Vof edges.

In an undirected graph G = (V, E), the edge
set £ consists of unordered pairs of vertices.

In either case, we have |E| = O(|V]).
Moreover, if GG 1s connected, then |E| > |V|— 1.

(Review CLRS, Appendix B.4 and B.5.)

3/25/10 CS 5633 Analysis of Algorithms

=T Adjacency-matrix

N

' representation

The adjacency matrix of a graph G = (V, E), where
V=1{1,2,...,n},1sthe matrix A[1 . . n, 1 .. n]

given by
.) Laf(i,)) € E,
Ali, /] {OH@ﬁ&E.

A1 2 3 4
g c 110 1 1 O O(|V]?) storage
’ 210 01 0 = dense
a a 310 0 O O representation.
410 01 O

3/25/10 CS 5633 Analysis of Algorithms 3

“ " Adjacency-list representation

1\‘

An adjacency list of a vertex v € J'1s the list Adj[v]
of vertices adjacent to v.

Adj[1]= {2, 3}
@’G Adi2] -)
Adi[3]= {}
a a Aaé':4

1=135

For undirected graphs, |Adj[v]| = degree(v).

For digraphs, | Adj[v] | = out-degree(v).

3/25/10 CS 5633 Analysis of Algorithms 4

A\LGORITHMS

— Adjacency-list representation

1\‘-‘ \‘ coemr

Handshaking Lemma:
Every edge is counted twice
 For undirected graphs:
2..ydegree(v) =2|E|
 For digraphs:
2.y in-degree(v) + 2. _, out-degree(v) =2 | E |

—> adjacency lists use O(|V] + |E|) storage

—> a sparse representation

— We usually use this representation,
unless stated otherwise

3/25/10 CS 5633 Analysis of Algorithms 5

ALGORITHMS

“ <" Graph Traversal

mny

Let G=(V,E) be a (directed or undirected)
graph, given 1n adjacency list representation.

Vi=n,|El=m
A graph traversal visits every vertex:

* Breadth-first search (BFS)
* Depth-first search (DFS)

3/25/10 CS 5633 Analysis of Algorithms

ALGORI

.,,- Breadth-First Search (BFS)

mny

BFS(G=(V£))
Mark all vertices in G as “unvisited” // time=0
Initialize empty queue O
for each vertex v € I'do
if v 1s unvisited

visit v // time++
O.enqueue(V)
BFS iter(G)

BFS iter(G)
while O 1s non-empty do
v = (.dequeue()
for each w adjacent to v do
if w 1s unvisited

visit w // time++
Add edge (v,w)to T’
O.enqueue(w)

3/25/10 CS 5633 Analysis of Algorithms 7

m Example of breadth-first
~* - search

m Example of breadth-first
~* - search

m Example of breadth-first
~* - search

@3 Example of breadth-first
~*' search

Ml- Example of breadth-first
- search

m Example of breadth-first
- search

@3 Example of breadth-first
1 search

@3 Example of breadth-first
~*' search

@3 Example of breadth-first
1 search

@3 Example of breadth-first
~*' search

@3 Example of breadth-first
1 search

@3 Example of breadth-first
1 search

ALGORITHMS

=" Breadth-First Search (BFS)

mny

BFS(G=(V.E))
Mark all vertices in G as “unvisited” // time=0
O(n) .
o(1) Initialize empty queue O
for each vertex v € "do
if v 1s unvisited

(

O(n) visit v // time++

without O.enqueue(v)

B jter | BFS_iter(G)

BES iter(G)

—— while O 1s non-empty do

v = (.dequeue()

for each w adjacent to v do

if w is unvisited
O(m) -<O(deg(v))< visit w // time++
Add edge (v,w)to T’
‘ \ O.enqueue(w)

~—

3/25/10 CS 5633 Analysis of Algorithms 20

ALGORITHMS

v BFS runtime

mny

» Each vertex is marked as unvisited in the beginning = O(n) time
» Each vertex 1s marked at most once, enqueued at most once,

and therefore dequeued at most once

 The time to process a vertex 1s proportional to the size of its
adjacency list (its degree), since the graph 1s given in adjacency list
representation

= O(m) time

 Total runtime 1s O(n+m) = O(|V| + |E|)

3/25/10 CS 5633 Analysis of Algorithms 21

ALGORI

.,,- Depth-First Search (DFS)

DFS(G=(V,E))
Mark all vertices in G as “unvisited” // time=0
for each vertex v € "do
if v 1s unvisited

DES rec(G,v)

DFS rec(G, v)
visit v // d|v]=++time
for each w adjacent to v do
if w 1s unvisited
Add edge (v,w) to tree T’
DFS rec(G,w)
// f[v]=t++time

3/25/10 CS 5633 Analysis of Algorithms 22

St ' Example of depth-first search
d/f
0/-

Store edges 1n

m:abcdefghi predecessorarray
- a

3/25/10 CS 5633 Analysis of Algorithms 23

::-" Example of depth-first search

@
ny

d/f
0/-
1/-
Store edges 1n
m:abcdefghi predecessorarray
-ab

3/25/10 CS 5633 Analysis of Algorithms 24

::-" Example of depth-first search

@
ny

d/f
0/-
1/-
2/3
Store edges 1n
m:abcdefghi predecessorarray
-ab

3/25/10 CS 5633 Analysis of Algorithms 25

::-" Example of depth-first search

@
ny

d/f
0/-
1/-
2/3
Store edges 1n
m:abcdefghi predecessorarray
-ab b

3/25/10 CS 5633 Analysis of Algorithms 26

::-" Example of depth-first search

@
ny

d/f
0/-
1/-
2/3
Store edges 1n
m:abcdefghi predecessorarray
-ab b ¢

3/25/10 CS 5633 Analysis of Algorithms 27

::-" Example of depth-first search

@
ny

d/f
0/-
1/-
2/3
Store edges 1n
m:abcdefghi predecessorarray
-ab b e g

3/25/10 CS 5633 Analysis of Algorithms 28

::-" Example of depth-first search

@
ny

d/f
0/-
1/-
6/-
2/3
Store edges 1n
m:abcdefghi predecessorarray
-ab b e1g

3/25/10 CS 5633 Analysis of Algorithms 29

St “ Example of depth-first search
d/f
0/- 7/8

Store edges 1n
f g h i1 predecessor array

€
b e1g

3/25/10 CS 5633 Analysis of Algorithms 30

:;:J Example of depth-first search

L]
\ £
ny

d/f
0/-

Store edges 1n
f g h i1 predecessor array

e
b e1g

3/25/10 CS 5633 Analysis of Algorithms 31

:?-' Example of depth-first search

@
\
™

d/f
0/-

1/-
6/9
2/3
Store edges 1n
m:abcdefghi predecessorarray
-ab bge1g

3/25/10 CS 5633 Analysis of Algorithms 32

:?-' Example of depth-first search

@
\
™

d/f 10/-
0/-

1/-
6/9
2/3
Store edges 1n
m:abcdefghi predecessorarray
-abfbge1g

3/25/10 CS 5633 Analysis of Algorithms 33

St “ Example of depth-first search
d/f 10/-
0/- 7/8

Store edges 1n
g h 1 predecessor array

3/25/10 CS 5633 Analysis of Algorithms 34

St “ Example of depth-first search
d/f 10/43
0/- 7/8

Store edges 1n
g h 1 predecessor array

3/25/10 CS 5633 Analysis of Algorithms 35

St “ Example of depth-first search
d/f 10/13
0/- 7/8

Store edges 1n
g h 1 predecessor array

3/25/10 CS 5633 Analysis of Algorithms 36

St “ Example of depth-first search
d/f 10/13
0/- 7/8

Store edges 1n
g h 1 predecessor array

3/25/10 CS 5633 Analysis of Algorithms 37

St “ Example of depth-first search
d/f 10/13
0/- 7/8

Store edges 1n
g h 1 predecessor array

3/25/10 CS 5633 Analysis of Algorithms 38

St “ Example of depth-first search
d/f 10/13
W7 7/8

Store edges 1n
g h 1 predecessor array

3/25/10 CS 5633 Analysis of Algorithms 39

ALGORITHMS

”"'—"T Depth-First Search (DFS)

:“.‘ \‘
DFS(G=(V,E))
O(n) Mark all vertices in G as “unvisited” // time=0
o (for each vertex v € 'do
.(n) if v 1s unvisited
without
DFS rec | DFS_rec(G,v)
DFS rec(G, v)
o(1) visit v // d|v]|=t++time
r for each w adjacent to v do
if w 1s unvisited
Q(deg(v)) < Add edge (v,w) to tree T’
without DFS rec(G,w)
recursive call o
* // f[v]=t++time

— With Handshaking Lemma, all recursive calls are O(m), for

a total of O(»n + m) runtime

3/25/10 CS 5633 Analysis of Algorithms 40

ALGORITHMS

v DFS runtime

mny

» Each vertex 1s visited at most once = O(n) time

* The body of the for loops (except the recursive call) take constant
time per graph edge

 All for loops take O(m2) time

* Total runtime 1s O(n+m) = O(|V| + |[E|)

3/25/10 CS 5633 Analysis of Algorithms 41

ALG) lTH\dS

" DFS edge classification
- 10/13

e Edge u—v is a:

* tree edge, if 1t 1s part of the depth-first forest.

* back edge, 1f u connects to an ancestor v 1n a depth-
first tree. It holds d(u)>d(v) and f(u)<f(v).

 forward edge, 1f it connects « to a descendant v in

a depth-first tree. It holds d(u)<d(v) and f(u)>f(v).

e cross edge, 1f 1t 1s any other edge. It holds
d(u)>d(v) and f{u)>f(v).

3/25/10 CS 5633 Analysis of Algorithms 42

\1 G ()R]IH'\IS

__

s+ Paths, Cycles, Connectivity

mny

Let G= (VE) be a directed (or undirected) graph

* A path from v, to v, in G 1s a sequence of vertices v,, v,,...,v, such that
(Vv €L (or {v,vy, b €E£1t G is undirected) for all ie {1,...k-1}.

A path 1s simple if all vertices in the path are distinct.

* Apathv,,v,,....,v forms a cycle if v,=v, and k=3.

A graph with no cycles is acyclic.

» An undirected acyclic graph 1s called a tree. (Trees do not have to
have a root vertex specified.)

* A directed acyclic graph 1s a DAG. (A DAG can have undirected
cycles i1f the direction of the edges 1s not considered.)

* An undirected graph 1s connected 1if every pair of vertices 1s connected
by a path. A directed graph is strongly connected if for every pair
u,ve V there 1s a path from « to v and there 1s a path from v to w.

* The (strongly) connected components of a graph are the equivalence

classes of vertices under this reachability relation.
3/25/10 CS 5633 Analysis of Algorithms 43

ALGORITHMS

——

" DAG Theorem

mny

Theorem: A directed graph G 1s acyclic

<> a depth-first search of G yields no back edges.
Proof: %\o
“=": Suppose there 1s a back edge (u,v). Then by 0

definition of a back edge there would be a cycle. ©

“<": Suppose G contains a cycle c. Let v be the first { %\‘o

vertex to be discovered in ¢, and let u be the
preceding vertex in ¢. v is an ancestor of u in the
depth-first forest, hence (u,v) 1s a back edge.

3/25/10 CS 5633 Analysis of Algorithms 44

~ &~ Topological Sort

-
Ve

Topologically sort the vertices of a directed acyclic

graph (DAG):
* Determine /: V' — {1, 2, ...,

= f(u) <f(v).

I

QUAFRGTRO

3/25/10 CS 5633 Analysis of Algorithms

ALC
."'\
k L

Ry

* Store vertices with in-degree 0 1n a queue Q.

* While Q is not empty
* Dequeue vertex v, and give 1t the next number
* Decrease in-degree of all adjacent vertices by 1
* Enqueue all vertices with in-degree 0

U1 10

Q:a,b,c,e,d, £ g 1,h

3/25/10 CS 5633 Analysis of Algorithms

:\ Topological Sort Algorithm

46

ALGORITHMS

-
-y —

~=~ Topological Sort Runtime

mny

Runtime:

* O(|V|+|E|) because every edge is touched once, and
every vertex 1s enqueued and dequeued exactly
once

3/25/10 CS 5633 Analysis of Algorithms

47

ALGORITH

“ <" Depth-First Search Revisited
DFS(G=(V,E))
Mark all vertices in G as “unvisited” // time=0

for cach vertex v € Vdo
if v 1s unvisited

DES rec(G,v)

DFS rec(G, v)
visit v // d|v]=++time
for each w adjacent to v do
if w 1s unvisited
Add edge (v,w) to tree T’
DFS rec(G,w)
// f[v]=t++time

3/25/10 CS 5633 Analysis of Algorithms 48

""T'" DEFS-Based Topological Sort
~*' Algorithm

e (Call DFS on the directed acyclic graph G=(V,E)
—> Finish time for every vertex

* Reverse the finish times (highest finish time
becomes the lowest finish time,...)

— Valid function / ’: V' — {1, 2, ..., | V'|} such that
(u,v) e E=f (1) <f (v)

Runtime: O(|V|+|E])

3/25/10 CS 5633 Analysis of Algorithms 49

-'\, . DFS-Based Topological Sort

Ve

 Run DFS:

3/25/10 CS 5633 Analysis of Algorithms

ALG) lTH\dS

" DFS edge classification
- 10/13

e Edge u—v is a:

* tree edge, if it 1s part of the depth-first forest.

* back edge, 1f u connects to an ancestor v 1n a depth-
first tree. It holds d(u)>d(v) and f(u)<f(v).

 forward edge, 1f it connects « to a descendant v in

a depth-first tree. It holds d(u)<d(v) and f(u)>f(v).

* cross edge, 1f 1t 1s any other edge. It holds
"d(u)>d(v) and f{u)>fv).

3/25/10 CS 5633 Analysis of Algorithms 51

ALGORITHM

-

= &~ DFS-Based Top. Sort Correctness

Ry

* Need to show that for any (u, v) € £ holds f (v) <[(u).
(since we consider reversed finish times)

 Consider exploring edge (u, v) in DFS:
* v cannot be visited and unfinished (and hence an ancestor in
the depth first tree), since then (u,v) would be a back edge
(which by the DAG lemma cannot happen).
* [f v has not been visited yet, it becomes a descendant of «, and
hence f(v)<f(u) (tree edge)
« [f v has been finished, /(1) has been set, and « 1s still being
explored, hence f(u)>f(v) (forward edge, cross edge) .

3/25/10 CS 5633 Analysis of Algorithms 52

ALGORITHMS

:,,- Topological Sort Runtime

mny

Runtime:

* O(|V|+|E|) because every edge is touched once, and
every vertex 1s enqueued and dequeued exactly
once

* DFS-based algorithm: O(|V|+ |E|)

3/25/10 CS 5633 Analysis of Algorithms

53

