

CS 5633 -- Spring 2010

Dynamic Programming

Carola Wenk

Slides courtesy of Charles Leiserson with small changes by Carola Wenk

Dynamic programming

- Algorithm design technique
- A technique for solving problems that have
 - overlapping subproblems
 - and, when used for optimization, have an optimal substructure property
- Idea: Do not repeatedly solve the same subproblems, but solve them only once and store the solutions in a dynamic programming table

Example: Fibonacci numbers

- F(0)=0; F(1)=1; F(n)=F(n-1)+F(n-2) for $n \ge 2$
- Implement this recursion naively:

Solve same subproblems many times!

Runtime is exponential in *n*.

• Store 1D DP-table and fill bottom-up in O(n) time:

Longest Common Subsequence

Example: Longest Common Subsequence (LCS)

• Given two sequences x[1 ...m] and y[1 ...n], find a longest subsequence common to them both.

"a" *not* "the"

but not a function

Brute-force LCS algorithm

Check every subsequence of x[1 ...m] to see if it is also a subsequence of y[1 ...m].

Analysis

- 2^m subsequences of x (each bit-vector of length m determines a distinct subsequence of x).
- Hence, the runtime would be exponential!

Towards a better algorithm

Two-Step Approach:

- 1. Compute the *length* of a longest-common subsequence.
- 2. Extend the algorithm to find an LCS.

Notation: Denote the length of a sequence s by |s|.

Strategy: Consider *prefixes* of x and y.

- Define c[i, j] = |LCS(x[1 ... i], y[1 ... j])|.
- Then, c[m, n] = |LCS(x, y)|.

Recursive formulation

Theorem.

$$c[i,j] = \begin{cases} c[i-1,j-1] + 1 & \text{if } x[i] = y[j], \\ \max\{c[i-1,j], c[i,j-1]\} & \text{otherwise.} \end{cases}$$

Proof. Case x[i] = y[j]:

Let z[1 ... k] = LCS(x[1 ... i], y[1 ... j]), where c[i, j] = k. Then, z[k] = x[i], or else z could be extended. Thus, z[1 ... k-1] is CS of x[1 ... i-1] and y[1 ... j-1].

Proof (continued)

Claim: z[1 ... k-1] = LCS(x[1 ... i-1], y[1 ... j-1]). Suppose w is a longer CS of x[1 ... i-1] and y[1 ... j-1], that is, |w| > k-1. Then, cut and paste: $w \mid\mid z[k]$ (w concatenated with z[k]) is a common subsequence of x[1 ... i] and y[1 ... j] with $|w| \mid z[k] \mid > k$. Contradiction, proving the claim.

Thus, c[i-1, j-1] = k-1, which implies that c[i, j] = c[i-1, j-1] + 1.

Other cases are similar.

Dynamic-programming hallmark #1

Optimal substructure

An optimal solution to a problem (instance) contains optimal solutions to subproblems.

If z = LCS(x, y), then any prefix of z is an LCS of a prefix of x and a prefix of y.

Recursive algorithm for LCS

```
LCS(x, y, i, j)
if x[i] = y[j]
then c[i, j] \leftarrow LCS(x, y, i-1, j-1) + 1
else c[i, j] \leftarrow max \{ LCS(x, y, i-1, j), LCS(x, y, i, j-1) \}
```

Worst-case: $x[i] \neq y[j]$, in which case the algorithm evaluates two subproblems, each with only one parameter decremented.

Recursion tree

Height = $m + n \Rightarrow$ work potentially exponential, but we're solving subproblems already solved!

Dynamic-programming hallmark #2

Overlapping subproblems

A recursive solution contains a "small" number of distinct subproblems repeated many times.

The number of distinct LCS subproblems for two strings of lengths m and n is only mn.

Dynamic-programming

There are two variants of dynamic programming:

- 1. Memoization
- 2. Bottom-up dynamic programming (often referred to as "dynamic programming")

Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

```
for all i, j: c[i,0]=0 and c[0,j]=0

LCS(x, y, i, j)

if c[i, j] = NIL

then if x[i] = y[j]

then c[i, j] \leftarrow LCS(x, y, i-1, j-1) + 1

else c[i, j] \leftarrow max \{ LCS(x, y, i-1, j), LCS(x, y, i, j-1) \}
```

Time = $\Theta(mn)$ = constant work per table entry. Space = $\Theta(mn)$.

Memoization

Bottom-up dynamicprogramming algorithm

IDEA:

Compute the table bottom-up.

Time = $\Theta(mn)$.

Bottom-up dynamicprogramming algorithm

IDEA:

Compute the table bottom-up.

Time = $\Theta(mn)$.

Reconstruct LCS by backtracing.

Space = $\Theta(mn)$.

Exercise:

 $O(\min\{m,n\}).$

