Dynamic Programming

Carola Wenk

Slides courtesy of Charles Leiserson with small
changes by Carola Wenk
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Y

e Algorithm design technique

* A technique for solving problems that have

e overlapping subproblems

 and, when used for optimization, have an optimal
substructure property

* ldea: Do not repeatedly solve the same subproblems,
but solve them only once and store the solutions in a
dynamic programming table
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“ < Example: Fibonacci numbers

e F(0)=0; F(1)=1; F(n)=F(n-1)+F(n-2) for n > 2

 Implement this recursion naively:

Solve same
F(n) —_ subproblems
F(n-1) F(n-2) many times !

<~ O\ ~ O\ ..
F(n-2) F(n-3) F(n-3) F(n-4)/Runtimeis
exponential in n.

e Store 1D DP-table and fill bottom-up in O(n) time:
F-10|1]1(2(31]5]8
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g ' _ongest Common Subsequence

Example: Longest Common Subsequence (LCS)

» Given two sequences x[1 .. m]and y[1 .. n], find
a longest subsequence common to them both.
\ (£a11 nOt (‘the11

x A B C B_D A B gepa-

/ I \ ‘ ” LCS(x, V)

y B D C A B A )

functional notation,
but not a function
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- Brute-force LCS algorithm

Check every subsequence of x[1 .. m] to see
If 1t 1s also a subsequence of y[1 .. n].

Analysis

* 2™ subsequences of x (each bit-vector of
length m determines a distinct subsequence
of x).

* Hence, the runtime would be exponential !
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“\ Towards a better algorithm

TWo-Step Approach:

1. Compute the length of a longest-common
subsequence.

2. Extend the algorithm to find an LCS.

Notation: Denote the length of a sequence s
by [s].

Strategy: Consider prefixes of x and .

e Define c[i, ] = |LCS(x[1 .. 1], y[1..]])|.

e Then, c[m, n] = |[LCS(x, y)|.
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- Recursive formulation

k‘“‘:\f’.'."f-‘“
Theorem.
.. jcl-1, 1] +1 It x[i] = yll,
CL = maxqefi-1, j], o[i, j-11} otherwise.

Proof. Case x[I] = y[J]

1 2 m

<L :: - |
2 I I I Y e
Letz[1.. K] = LCS([L. . ], y[1 .. j]), where c[i, j]

= k. Then, z[k] = x[i], or else z could be extended.
Thus, z[1..k=1]1sCSof x[1..I1-1]and y[1 .. |-1].
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Claim: z[1..k=-1] = LCS(x[1..1-1],y[1..]-1]).
Suppose w is a longer CS of x[1 .. 1-1] and
y[1..]-1], thatis, |w|>k-=1. Then, cut and
paste: w || z[k] (w concatenated with z[k]) Is a
common subsequence of x[1 .. 1] and y[1 .. ]]

with |w || z[k]| > k. Contradiction, proving the
claim.
Thus, c[i-1, ]-1] = k=1, which implies that c[i, |]
= c[i-1, j-1] + 1.

Other cases are similar.
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i Dynamlc programming
7 hallmark #1

L)

(0 Optimal substructure

An optimal solution to a problem
(Instance) contains optimal
solutions to subproblems.

~ mmm) Recurrence

If z = LCS(x, y), then any prefix of z is
an LCS of a prefix of x and a prefix of y.
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= Recursive algorithm for LCS

LCS(X, v, 1, ])
It x[1] =y[]]
thenc[i, J] « LCS(x,y, I-1, ]-1) + 1
else c[i, j] <« max{ LCS(x, v, i-1, j),
LCS(x, v, i, j-1)}

Worst-case: x[i] = y[ ||, In which case the
algorithm evaluates two subproblems, each
with only one parameter decremented.
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= Recursion tree

YV

m=3,n=4 @
@ same @

subproblem

1y g 23) . (3g) men
139) (22 139 (22

Height = m + n = work potentially exponential,
but we’re solving subproblems already solved!
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v Dynamlc programming
«7 hallmark #2

o0

(O Overlapping subproblems
A recursive solution contains a
“small”” number of distinct
subproblems repeated many times. |

—/

The number of distinct LCS subproblems for
two strings of lengths m and n is only mn.
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~ &~ Dynamic-programming

here are two variants of dynamic
programming:
1. Memoization

2. Bottom-up dynamic programming
(often referred to as “dynamic
programming”)
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“* Memoization algorithm

Memoization: After computing a solution to a
subproblem, store it in a table. Subsequent calls check

the table to avoid redoing work.

forall 1, J: c[1,0]=0 and c[O, |]=0

LCS(x, v, 1, |)

iIf c[i, j] = NIL
then if x[i] = y[j]
then c[i, J] « LCS(x,y, 1-1, ]-1) + 1
else c[i, j] < max{ LCS(x, v, i-1, j),
LCS(x, v, i, j-1)}

Time = ®(mn) = constant work per table entry.
Space = ®(mn).

2/23/10 CS 5633 Analysis of Algorithms

'\

same
> as
before

14



LCS(x y 7,6)
(6 6) (7 5)
(5 5) (6, 4)

N
(45)(54)(53) 3 C
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e M emoization

1 2 3 4 5 6 7
XA B C B D A B
0 O\O 00000
O«0 |1 |ntl|intlintl{ntl|nil

| B T T T T
0 Ot tl nil | ntl| nil | nil | nil
00 |2 [nil{nil{nil{nil|nil
O 1 Ind{ntlntlintl{ntl|nil
0 | )

15



"\\

IDEA:
Compute the

table bottom-up. B

Time =

2/23/10

®(mn).

> W > O 0O

m\‘ Bottom-up dynamic-
- programming algorithm
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m-q Bottom-up dynamic-
- programming algorithm

IDEA:

Compute the
table bottom-up. B

Time = ®(mn).

Reconstruct
LCS by back-
tracing.

Space = ®(mn).
Exercise:
O(min{m, n}).
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