
CS 5633 Analysis of Algorithms 13/11/2010

CS 5633 -- Spring 2010

Amortized Analysis
Carola Wenk

Slides courtesy of Charles Leiserson with small
changes by Carola Wenk

CS 5633 Analysis of Algorithms 23/11/2010

Dynamic tables

Problem: We may not know the proper size in
advance!

Task: Store a dynamic set in a table/array. Elements
can only be inserted, and all inserted elements are
stored in one contiguous part in the array. The table
should be as small as possible, but large enough so
that it won’t overflow.

IDEA: Whenever the table overflows, “grow” it by
allocating (via malloc or new) a new, larger table.
Move all items from the old table into the new one,
and free the storage for the old table.

Solution: Dynamic tables.

CS 5633 Analysis of Algorithms 33/11/2010

Example of a dynamic table

1. INSERT 1

2. INSERT overflow

CS 5633 Analysis of Algorithms 43/11/2010

11

Example of a dynamic table

1. INSERT
2. INSERT overflow

CS 5633 Analysis of Algorithms 53/11/2010

11
2

Example of a dynamic table

1. INSERT
2. INSERT

CS 5633 Analysis of Algorithms 63/11/2010

Example of a dynamic table

1. INSERT
2. INSERT

11

22

3. INSERT overflow

CS 5633 Analysis of Algorithms 73/11/2010

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT

2
1

overflow

CS 5633 Analysis of Algorithms 83/11/2010

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT

2
1

CS 5633 Analysis of Algorithms 93/11/2010

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
4. INSERT 4

3
2
1

CS 5633 Analysis of Algorithms 103/11/2010

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
4. INSERT
5. INSERT

4
3
2
1

overflow

CS 5633 Analysis of Algorithms 113/11/2010

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
4. INSERT
5. INSERT

4
3
2
1

overflow

CS 5633 Analysis of Algorithms 123/11/2010

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
4. INSERT
5. INSERT

4
3
2
1

CS 5633 Analysis of Algorithms 133/11/2010

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
4. INSERT

6. INSERT 6
5. INSERT 5

4
3
2
1

77. INSERT

CS 5633 Analysis of Algorithms 143/11/2010

Worst-case analysis

Consider a sequence of n insertions. The
worst-case time to execute one insertion is
Ο(n). Therefore, the worst-case time for n
insertions is n ·Ο(n) = Ο(n2).

WRONG! In fact, the worst-case cost for
n insertions is only Θ(n) ≪ Ο(n2).

Let’s see why.

CS 5633 Analysis of Algorithms 153/11/2010

Tighter analysis

i 1 2 3 4 5 6 7 8 9 10
sizei 1 2 4 4 8 8 8 8 16 16

Let ci = the cost of the i th insertion

ci

CS 5633 Analysis of Algorithms 163/11/2010

Tighter analysis

Let ci = the cost of the i th insertion

= 1 + cost to double array size

i 1 2 3 4 5 6 7 8 9 10
sizei 1 2 4 4 8 8 8 8 16 16

1 1 1 1 1 1 1 1 1 1
? ? ? ? ? ? ? ? ? ?

ci

CS 5633 Analysis of Algorithms 173/11/2010

Tighter analysis

Let ci = the cost of the i th insertion

= 1 + cost to double array size

i 1 2 3 4 5 6 7 8 9 10
sizei 1 2 4 4 8 8 8 8 16 16

1 1 1 1 1 1 1 1 1 1
0 1 2 0 4 0 0 0 8 0

ci

CS 5633 Analysis of Algorithms 183/11/2010

Tighter analysis

Let ci = the cost of the i th insertion

= 1 + cost to double array size

i 1 2 3 4 5 6 7 8 9 10
sizei 1 2 4 4 8 8 8 8 16 16

1 1 1 1 1 1 1 1 1 1
0 1 2 0 4 0 0 0 8 0

ci 1 2 3 1 5 1 1 1 9 1

CS 5633 Analysis of Algorithms 193/11/2010

Tighter analysis (continued)

 

)(
3

2

)1lg(

0

1

n
n

n

c

n

j

j

n

i
i

Θ=
≤

+≤

=

∑

∑
−

=

=
Cost of n insertions

.

Thus, the average cost of each dynamic-table
operation is Θ(n)/n = Θ(1).

CS 5633 Analysis of Algorithms 203/11/2010

Amortized analysis
An amortized analysis is any strategy for
analyzing a sequence of operations:
• compute the total cost of the sequence, OR

• amortized cost of an operation = average
cost per operation, averaged over the number
of operations in the sequence

• amortized cost can be small, even though a
single operation within the sequence might be
expensive

CS 5633 Analysis of Algorithms 213/11/2010

Amortized analysis

Even though we’re taking averages, however,
probability is not involved!

• An amortized analysis guarantees the
average performance of each operation in
the worst case.

CS 5633 Analysis of Algorithms 223/11/2010

Types of amortized analyses
Three common amortization arguments:
• the aggregate method,
• the accounting method,
• the potential method.
We’ve just seen an aggregate analysis.
The aggregate method, though simple, lacks the
precision of the other two methods. In particular,
the accounting and potential methods allow a
specific amortized cost to be allocated to each
operation.

CS 5633 Analysis of Algorithms 233/11/2010

Accounting method
• Charge i th operation a fictitious amortized cost ĉi,

where $1 pays for 1 unit of work (i.e., time).
• This fee is consumed to perform the operation, and
• any amount not immediately consumed is stored in

the bank for use by subsequent operations.
• The bank balance must not go negative! We must

ensure that

∑∑
==

≤
n

i
i

n

i
i cc

11
ˆ

for all n.
• Thus, the total amortized costs provide an upper

bound on the total true costs.

CS 5633 Analysis of Algorithms 243/11/2010

$0$0 $0$0 $0$0 $0$0 $2$2 $2$2

Example:
$2 $2

Accounting analysis of
dynamic tables

Charge an amortized cost of ĉi = $3 for the i th
insertion.
• $1 pays for the immediate insertion.
• $2 is stored for later table doubling.
When the table doubles, $1 pays to move a
recent item, and $1 pays to move an old item.

overflow

CS 5633 Analysis of Algorithms 253/11/2010

Example:

Accounting analysis of
dynamic tables

Charge an amortized cost of ĉi = $3 for the i th
insertion.
• $1 pays for the immediate insertion.
• $2 is stored for later table doubling.
When the table doubles, $1 pays to move a
recent item, and $1 pays to move an old item.

overflow

$0$0 $0$0 $0$0 $0$0 $0$0 $0$0 $0$0 $0$0

CS 5633 Analysis of Algorithms 263/11/2010

Example:

Accounting analysis of
dynamic tables

Charge an amortized cost of ĉi = $3 for the i th
insertion.
• $1 pays for the immediate insertion.
• $2 is stored for later table doubling.
When the table doubles, $1 pays to move a
recent item, and $1 pays to move an old item.

$0$0 $0$0 $0$0 $0$0 $0$0 $0$0 $0$0 $0$0 $2 $2 $2

CS 5633 Analysis of Algorithms 273/11/2010

Accounting analysis
(continued)

Key invariant: Bank balance never drops below 0.
Thus, the sum of the amortized costs provides an
upper bound on the sum of the true costs.

i 1 2 3 4 5 6 7 8 9 10
sizei 1 2 4 4 8 8 8 8 16 16

ci 1 2 3 1 5 1 1 1 9 1
ĉi 2 3 3 3 3 3 3 3 3 3

banki 1 2 2 4 2 4 6 8 2 4
*

*Okay, so I lied. The first operation costs only $2, not $3.

CS 5633 Analysis of Algorithms 283/11/2010

Incrementing a Binary Counter
Given: A k-bit binary counter A[0,1,…,k-1], initialized with

0,0,…,0. The counter supports the following INCREMENT
operation:

INCREMENT(A) // increases counter by 1
i ← 0
while i<length(A) and A[i]=1 do

A[i] ← 0
i++

if i<length(A) then
A[i] ← 1

• Question: In a sequence of n INCREMENT operations, what is
the amortized runtime of one INCREMENT operation?

CS 5633 Analysis of Algorithms 293/11/2010

Binary Counter Example

Initial counter 0 0 0 0 0 0 0 0
After 1 increment 0 0 0 0 0 0 0 1
After 2 increments 0 0 0 0 0 0 1 0
After 3 increments 0 0 0 0 0 0 1 1
After 4 increments 0 0 0 0 0 1 0 0
After 5 increments 0 0 0 0 0 1 0 1
After 6 increments 0 0 0 0 0 1 1 0
After 7 increments 0 0 0 0 0 1 1 1
After 8 increments 0 0 0 0 1 0 0 0
After 9 increments 0 0 0 0 1 0 0 1

Example for k=8 and n=9:

• The worst-case runtime of one INCREMENT operation is O(k)
• For n operations the total is O(nk)

1→0
flip

0→1
flip

$1
$1$1

$1$2
$1

$1

$1$1
$1
$1$3
$1

CS 5633 Analysis of Algorithms 303/11/2010

Accounting Method
• Charge $2 to set a bit to 1 (0→1 flip)

$1 pays for the actual flip

Store $1 on the bit as credit to be used later when this bit is
flipped back to 0

• Charge $0 to set a bit to 0 (1→0 flip)

Every 1 in the counter has $1 credit on it, which is used to
pay for this flip

CS 5633 Analysis of Algorithms 313/11/2010

Binary Counter Example

Initial counter 0 0 0 0 0 0 0 0
After 1 increment 0 0 0 0 0 0 0 1
After 2 increments 0 0 0 0 0 0 1 0
After 3 increments 0 0 0 0 0 0 1 1
After 4 increments 0 0 0 0 0 1 0 0
After 5 increments 0 0 0 0 0 1 0 1
After 6 increments 0 0 0 0 0 1 1 0
After 7 increments 0 0 0 0 0 1 1 1
After 8 increments 0 0 0 0 1 0 0 0
After 9 increments 0 0 0 0 1 0 0 1

Example for k=8 and n=9: 1→0
flip

0→1
flip

$1
$1$1

$1$2
$1

$1

$1$1
$1
$1$3
$1

1→0
flip

0→1
flip

$2
$2$0

$2$0
$2

$2

$2$0
$2
$2$0
$2

Actual cost Amortized cost

CS 5633 Analysis of Algorithms 323/11/2010

Accounting Method
• Charge $2 to set a bit to 1 (0→1 flip)

$1 pays for the actual flip

Store $1 on the bit as credit to be used later when this bit is
flipped back to 0

• Charge $0 to set a bit to 0 (1→0 flip)

Every 1 in the counter has $1 credit on it, which is used to
pay for this flip

⇒ Since each INCREMENT operation is composed of one 0→1 flip
and possibly multiple 1→0 flips, the amortized runtime of one
INCREMENT operation is O(1).

CS 5633 Analysis of Algorithms 333/11/2010

Potential method
IDEA: View the bank account as the potential
energy (à la physics) of the dynamic set.
Framework:
• Start with an initial data structure D0.
• Operation i transforms Di–1 to Di.
• The cost of operation i is ci.
• Define a potential function Φ : {Di} → R,

such that Φ(D0) = 0 and Φ(Di) ≥ 0 for all i.
• The amortized cost ĉi with respect to Φ is

defined to be ĉi = ci + Φ(Di) – Φ(Di–1).

CS 5633 Analysis of Algorithms 343/11/2010

Understanding potentials
ĉi = ci + Φ(Di) – Φ(Di–1)

potential difference ∆Φi

• If ∆Φi > 0, then ĉi > ci. Operation i stores
work in the data structure for later use.

• If ∆Φi < 0, then ĉi < ci. The data structure
delivers up stored work to help pay for
operation i.

CS 5633 Analysis of Algorithms 353/11/2010

The amortized costs bound
the true costs

The total amortized cost of n operations is

()∑∑
=

−
=

Φ−Φ+=
n

i
iii

n

i
i DDcc

1
1

1
)()(ˆ

Summing both sides.

CS 5633 Analysis of Algorithms 363/11/2010

The amortized costs bound
the true costs

The total amortized cost of n operations is

()

)()(

)()(ˆ

0
1

1
1

1

DDc

DDcc

n

n

i
i

n

i
iii

n

i
i

Φ−Φ+=

Φ−Φ+=

∑

∑∑

=

=
−

=

The series telescopes.

CS 5633 Analysis of Algorithms 373/11/2010

The amortized costs bound
the true costs

The total amortized cost of n operations is

()

∑

∑

∑∑

=

=

=
−

=

≥

Φ−Φ+=

Φ−Φ+=

n

i
i

n

n

i
i

n

i
iii

n

i
i

c

DDc

DDcc

1

0
1

1
1

1

)()(

)()(ˆ

since Φ(Dn) ≥ 0 and
Φ(D0) = 0.

CS 5633 Analysis of Algorithms 383/11/2010

Potential analysis of table
doubling

Therefore:
• Φ(D0) = 0,
• Φ(Di) ≥ 0 for all i.

Immediately after an expansion i = sizei / 2, and therefore
Φ(Di) = 0.
Immediately before an expansion i = sizei , and therefore
Φ(Di)= i.

Define the potential of the table after the ith insertion by
Φ(Di) = 2i – sizei = 2i – 2log i. (Assume that 2log 0 = 0.)

CS 5633 Analysis of Algorithms 393/11/2010

Potential analysis of table
doubling

i 1 2 3 4 5 6 7 8 9 10
sizei 1 2 4 4 8 8 8 8 16 16

ci 1 2 3 1 5 1 1 1 9 1
ĉi 2 3 3 3 3 3 3 3 3 3

banki 1 2 2 4 2 4 6 8 2 4
*

log i 0 1 2 2 3 3 3 3 4 4

Define the potential of the table after the ith insertion by
Φ(Di) = 2i – sizei = 2i – 2log i. (Assume that 2log 0 = 0.)

CS 5633 Analysis of Algorithms 403/11/2010

Potential analysis of table
doubling

i 1 2 3 4 5 6 7 8 9 10
sizei 1 2 4 4 8 8 8 8 16 16

ci 1 2 3 1 5 1 1 1 9 1
ĉi 2 3 3 3 3 3 3 3 3 3

banki 1 2 2 4 2 4 6 8 2 4
*

log i 0 1 2 2 3 3 3 3 4 4

Define the potential of the table after the ith insertion by
Φ(Di) = 2i – sizei = 2i – 2log i. (Assume that 2log 0 = 0.)

Φ(Di)
Φ(Di)-Φ(Di) 1 0 2 -2 2 2 2 -6 2

CS 5633 Analysis of Algorithms 413/11/2010

Calculation of amortized costs

The amortized cost of the i th insertion is

ĉi = ci + Φ(Di) – Φ(Di–1)

i + (2i – 2log i) – (2(i –1) – 2log (i–1))
if i – 1 is an exact power of 2,

1 + (2i – 2log i) – (2(i –1) – 2log (i–1))
otherwise.

=

for all i ≥ 1

CS 5633 Analysis of Algorithms 423/11/2010

Calculation (Case 1)

Case 1: i – 1 is an exact power of 2.

ĉi = i + (2i – 2log i) – (2(i –1) – 2log (i–1))
= i + 2 – (2log i – 2log (i–1))
= i + 2 – (2(i – 1) – (i – 1))
= i + 2 – 2i + 2 + i – 1
= 3

CS 5633 Analysis of Algorithms 433/11/2010

Calculation (Case 2)

Case 2: i – 1 is not an exact power of 2.

ĉi = 1 + (2i – 2log i) – (2(i –1) – 2log (i–1))
= 1 + 2 – (2log i – 2log (i–1))
= 3

Therefore, n insertions cost Θ(n) in the worst case.

CS 5633 Analysis of Algorithms 443/11/2010

Conclusions
• Amortized costs can provide a clean abstraction

of data-structure performance.
• Any of the analysis methods can be used when

an amortized analysis is called for, but each
method has some situations where it is arguably
the simplest.

• Different schemes may work for assigning
amortized costs in the accounting method,
sometimes yielding radically different bounds.

