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Dynamic tables

Problem: We may not know the proper size in 
advance!

Task: Store a dynamic set in a table/array. Elements 
can only be inserted, and all inserted elements are 
stored in one contiguous part in the array. The table 
should be as small as possible, but large enough so 
that it won’t overflow.

IDEA: Whenever the table overflows, “grow” it by 
allocating (via malloc or new) a new, larger table.  
Move all items from the old table into the new one, 
and free the storage for the old table.

Solution: Dynamic tables.
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Example of a dynamic table

1. INSERT 1

2. INSERT overflow
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11

Example of a dynamic table

1. INSERT
2. INSERT overflow
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11
2

Example of a dynamic table

1. INSERT
2. INSERT
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Example of a dynamic table

1. INSERT
2. INSERT

11

22

3. INSERT overflow
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Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT

2
1

overflow
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Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT

2
1
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Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
4. INSERT 4

3
2
1
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Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
4. INSERT
5. INSERT

4
3
2
1

overflow
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Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
4. INSERT
5. INSERT

4
3
2
1

overflow
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Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
4. INSERT
5. INSERT

4
3
2
1
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Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
4. INSERT

6. INSERT 6
5. INSERT 5

4
3
2
1

77. INSERT
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Worst-case analysis

Consider a sequence of n insertions.  The 
worst-case time to execute one insertion is 
Ο(n).  Therefore, the worst-case time for n
insertions is n ·Ο(n) = Ο(n2).

WRONG! In fact, the worst-case cost for 
n insertions is only Θ(n) ≪ Ο(n2).

Let’s see why.
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Tighter analysis

i 1 2 3 4 5 6 7 8 9 10
sizei 1 2 4 4 8 8 8 8 16 16

Let ci = the cost of the i th insertion

ci



CS 5633 Analysis of Algorithms 163/11/2010

Tighter analysis

Let ci = the cost of the i th insertion

= 1 + cost to double array size

i 1 2 3 4 5 6 7 8 9 10
sizei 1 2 4 4 8 8 8 8 16 16

1 1 1 1 1 1 1 1 1 1
? ? ? ? ? ? ? ? ? ?

ci
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Tighter analysis

Let ci = the cost of the i th insertion

= 1 + cost to double array size

i 1 2 3 4 5 6 7 8 9 10
sizei 1 2 4 4 8 8 8 8 16 16

1 1 1 1 1 1 1 1 1 1
0 1 2 0 4 0 0 0 8 0

ci
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Tighter analysis

Let ci = the cost of the i th insertion

= 1 + cost to double array size

i 1 2 3 4 5 6 7 8 9 10
sizei 1 2 4 4 8 8 8 8 16 16

1 1 1 1 1 1 1 1 1 1
0 1 2 0 4 0 0 0 8 0

ci 1 2 3 1 5 1 1 1 9 1
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Tighter analysis (continued)
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Cost of n insertions
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Thus, the average cost of each dynamic-table 
operation is Θ(n)/n = Θ(1).
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Amortized analysis
An amortized analysis is any strategy for 
analyzing a sequence of operations:
• compute the total cost of the sequence, OR 

• amortized  cost of an operation = average 
cost per operation, averaged over the number 
of operations in the sequence

• amortized cost can be small, even though a 
single operation within the sequence might be 
expensive
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Amortized analysis

Even though we’re taking averages, however, 
probability is not involved!

• An amortized analysis guarantees the 
average performance of each operation in 
the worst case.
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Types of amortized analyses
Three common amortization arguments:
• the aggregate method,
• the accounting method,
• the potential method.
We’ve just seen an aggregate analysis.  
The aggregate method, though simple, lacks the 
precision of the other two methods.  In particular, 
the accounting and potential methods allow a 
specific amortized cost to be allocated to each 
operation.
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Accounting method
• Charge i th operation a fictitious amortized cost ĉi, 

where $1 pays for 1 unit of work (i.e., time).
• This fee is consumed to perform the operation, and
• any amount not immediately consumed is stored in 

the bank for use by subsequent operations.
• The bank balance must not go negative!  We must 

ensure that

∑∑
==

≤
n

i
i

n

i
i cc

11
ˆ

for all n.
• Thus, the total amortized costs provide an upper 

bound on the total true costs.
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$0$0 $0$0 $0$0 $0$0 $2$2 $2$2

Example:
$2 $2

Accounting analysis of 
dynamic tables

Charge an amortized cost of ĉi = $3 for the i th 
insertion.
• $1 pays for the immediate insertion.
• $2 is stored for later table doubling.
When the table doubles, $1 pays to move a 
recent item, and $1 pays to move an old item.

overflow
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Example:

Accounting analysis of 
dynamic tables

Charge an amortized cost of ĉi = $3 for the i th 
insertion.
• $1 pays for the immediate insertion.
• $2 is stored for later table doubling.
When the table doubles, $1 pays to move a 
recent item, and $1 pays to move an old item.

overflow

$0$0 $0$0 $0$0 $0$0 $0$0 $0$0 $0$0 $0$0
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Example:

Accounting analysis of 
dynamic tables

Charge an amortized cost of ĉi = $3 for the i th 
insertion.
• $1 pays for the immediate insertion.
• $2 is stored for later table doubling.
When the table doubles, $1 pays to move a 
recent item, and $1 pays to move an old item.

$0$0 $0$0 $0$0 $0$0 $0$0 $0$0 $0$0 $0$0 $2 $2 $2
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Accounting analysis 
(continued)

Key invariant: Bank balance never drops below 0.  
Thus, the sum of the amortized costs provides an 
upper bound on the sum of the true costs.

i 1 2 3 4 5 6 7 8 9 10
sizei 1 2 4 4 8 8 8 8 16 16

ci 1 2 3 1 5 1 1 1 9 1
ĉi 2 3 3 3 3 3 3 3 3 3

banki 1 2 2 4 2 4 6 8 2 4
*

*Okay, so I lied.  The first operation costs only $2, not $3.
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Incrementing a Binary Counter
Given: A k-bit binary counter A[0,1,…,k-1], initialized with 

0,0,…,0. The counter supports the following INCREMENT
operation: 

INCREMENT(A) // increases counter by 1
i ← 0
while i<length(A) and A[i]=1 do

A[i] ← 0
i++

if i<length(A) then
A[i] ← 1

• Question: In a sequence of n INCREMENT operations, what is 
the amortized runtime of one INCREMENT operation?
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Binary Counter Example

Initial counter 0 0 0 0 0 0 0 0
After 1 increment 0 0 0 0 0 0 0 1
After 2 increments 0 0 0 0 0 0 1 0
After 3 increments 0 0 0 0 0 0 1 1
After 4 increments 0 0 0 0 0 1 0 0
After 5 increments 0 0 0 0 0 1 0 1
After 6 increments 0 0 0 0 0 1 1 0
After 7 increments 0 0 0 0 0 1 1 1
After 8 increments 0 0 0 0 1 0 0 0
After 9 increments 0 0 0 0 1 0 0 1

Example for k=8 and n=9:

• The worst-case runtime of one INCREMENT operation is O(k)
• For n operations the total is O(nk)

1→0
flip

0→1
flip

$1
$1$1

$1$2
$1

$1

$1$1
$1
$1$3
$1
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Accounting Method
• Charge $2 to set a bit to 1 (0→1 flip)

$1 pays for the actual flip

Store $1 on the bit as credit to be used later when this bit is 
flipped back to 0

• Charge $0 to set a bit to 0 (1→0 flip)

Every 1 in the counter has $1 credit on it, which is used to 
pay for this flip
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Binary Counter Example

Initial counter 0 0 0 0 0 0 0 0
After 1 increment 0 0 0 0 0 0 0 1
After 2 increments 0 0 0 0 0 0 1 0
After 3 increments 0 0 0 0 0 0 1 1
After 4 increments 0 0 0 0 0 1 0 0
After 5 increments 0 0 0 0 0 1 0 1
After 6 increments 0 0 0 0 0 1 1 0
After 7 increments 0 0 0 0 0 1 1 1
After 8 increments 0 0 0 0 1 0 0 0
After 9 increments 0 0 0 0 1 0 0 1

Example for k=8 and n=9: 1→0
flip

0→1
flip

$1
$1$1

$1$2
$1

$1

$1$1
$1
$1$3
$1

1→0
flip

0→1
flip

$2
$2$0

$2$0
$2

$2

$2$0
$2
$2$0
$2

Actual cost Amortized cost
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Accounting Method
• Charge $2 to set a bit to 1 (0→1 flip)

$1 pays for the actual flip

Store $1 on the bit as credit to be used later when this bit is 
flipped back to 0

• Charge $0 to set a bit to 0 (1→0 flip)

Every 1 in the counter has $1 credit on it, which is used to 
pay for this flip

⇒ Since each INCREMENT operation is composed of one 0→1 flip 
and possibly multiple 1→0 flips, the amortized runtime of one 
INCREMENT operation is O(1). 
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Potential method
IDEA: View the bank account as the potential 
energy (à la physics) of the dynamic set.
Framework:
• Start with an initial data structure D0.
• Operation i transforms Di–1 to Di.  
• The cost of operation i is ci.
• Define a potential function Φ : {Di} → R,

such that Φ(D0 ) = 0 and Φ(Di ) ≥ 0 for all i. 
• The amortized cost ĉi with respect to Φ is 

defined to be ĉi = ci + Φ(Di) – Φ(Di–1). 
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Understanding potentials
ĉi = ci + Φ(Di) – Φ(Di–1)

potential difference ∆Φi

• If  ∆Φi > 0, then ĉi > ci.  Operation i stores 
work in the data structure for later use.

• If  ∆Φi < 0, then ĉi < ci.  The data structure 
delivers up stored work to help pay for 
operation i.
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The amortized costs bound 
the true costs

The total amortized cost of n operations is
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Summing both sides.
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The amortized costs bound 
the true costs

The total amortized cost of n operations is
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The series telescopes.
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The amortized costs bound 
the true costs

The total amortized cost of n operations is
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since Φ(Dn) ≥ 0 and
Φ(D0 ) = 0.
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Potential analysis of table 
doubling

Therefore:
• Φ(D0 ) = 0,
• Φ(Di) ≥ 0 for all i.

Immediately after an expansion i = sizei / 2, and therefore 
Φ(Di) = 0. 
Immediately before an expansion i = sizei , and therefore 
Φ(Di)= i.

Define the potential of the table after the ith insertion by 
Φ(Di) = 2i – sizei = 2i – 2log i.  (Assume that 2log 0 = 0.)
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Potential analysis of table 
doubling

i 1 2 3 4 5 6 7 8 9 10
sizei 1 2 4 4 8 8 8 8 16 16

ci 1 2 3 1 5 1 1 1 9 1
ĉi 2 3 3 3 3 3 3 3 3 3

banki 1 2 2 4 2 4 6 8 2 4
*

log i 0 1 2 2 3 3 3 3 4 4

Define the potential of the table after the ith insertion by 
Φ(Di) = 2i – sizei = 2i – 2log i.  (Assume that 2log 0 = 0.)
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Potential analysis of table 
doubling

i 1 2 3 4 5 6 7 8 9 10
sizei 1 2 4 4 8 8 8 8 16 16

ci 1 2 3 1 5 1 1 1 9 1
ĉi 2 3 3 3 3 3 3 3 3 3

banki 1 2 2 4 2 4 6 8 2 4
*

log i 0 1 2 2 3 3 3 3 4 4

Define the potential of the table after the ith insertion by 
Φ(Di) = 2i – sizei = 2i – 2log i.  (Assume that 2log 0 = 0.)

Φ(Di)
Φ(Di)-Φ(Di) 1 0 2 -2 2 2 2 -6 2
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Calculation of amortized costs

The amortized cost of the i th insertion is

ĉi = ci + Φ(Di) – Φ(Di–1)

i + (2i – 2log i) – (2(i –1) – 2log (i–1))
if i – 1 is an exact power of 2,

1 + (2i – 2log i) – (2(i –1) – 2log (i–1))
otherwise.

=

for all i ≥ 1
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Calculation (Case 1)

Case 1: i – 1 is an exact power of 2.

ĉi = i + (2i – 2log i) – (2(i –1) – 2log (i–1))
= i + 2 – (2log i – 2log (i–1))
= i + 2 – (2(i – 1) – (i – 1))
= i + 2 – 2i + 2 + i – 1
= 3
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Calculation (Case 2)

Case 2: i – 1 is not an exact power of 2.

ĉi = 1 + (2i – 2log i) – (2(i –1) – 2log (i–1))
= 1 + 2 – (2log i – 2log (i–1))
= 3

Therefore, n insertions cost Θ(n) in the worst case.
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Conclusions
• Amortized costs can provide a clean abstraction 

of data-structure performance.
• Any of the analysis methods can be used when 

an amortized analysis is called for, but each 
method has some situations where it is arguably 
the simplest.

• Different schemes may work for assigning 
amortized costs in the accounting method, 
sometimes yielding radically different bounds.


