| et CS 5633 -- Spring 2010

[W :
“\‘ i

ALGORITHMS

1 il
|
\\"l —
1 ‘ l THOMAS H CORMEN
CHARLES E LEISERSON
RONALD L. RIVEST
CLIFFORD S TEIN

Amortized Analysis

Carola Wenk

Slides courtesy of Charles Leiserson with small
changes by Carola Wenk

3/11/2010 CS 5633 Analysis of Algorithms

ALGORITHMS

“ <" Dynamic tables

Task: Store a dynamic set 1n a table/array. Elements
can only be 1nserted, and all inserted elements are
stored 1n one contiguous part in the array. The table
should be as small as possible, but large enough so

that 1t won’t overflow.

Problem: We may not know the proper size in
advance!
Solution: Dynamic tables.

IDEA: Whenever the table overflows, “grow” 1t by
allocating (viamalloc or new) a new, larger table.

Move all items from the old table into the new one,
and free the storage for the old table.

3/11/2010 CS 5633 Analysis of Algorithms

-y

.'.; FTHMS .
“ " Example of a dynamic table

l. INSERT 3

2. INSERT overflow

3/11/2010 CS 5633 Analysis of Algorithms

A\LGORITHMS

k-?;‘ Example of a dynamic table

Y

1. INSERT E—»H

2. INSERT overflow

3/11/2010 CS 5633 Analysis of Algorithms

A\LGORITHMS

k-?;‘ Example of a dynamic table

Y

1. INSERT D 1
2. INSERT 2

3/11/2010 CS 5633 Analysis of Algorithms

r ‘-:.(ﬁ;(“).ll‘{i"'l"H.,'\.i!"a' .
ey '_' Example of a dynamic table

Y

1. INSERT D 1
2. INSERT 2

3. INSERT overflow

3/11/2010 CS 5633 Analysis of Algorithms

“ " Example of a dynamic table

Y

2. INSERT 2

3. INSERT overflow

3/11/2010 CS 5633 Analysis of Algorithms

“ " Example of a dynamic table

Y

2. INSERT 2

3/11/2010 CS 5633 Analysis of Algorithms

. ~
\ £

3‘ Example of a dynamic table

Y

1. INSERT D 1
2. INSERT 2
3. INSERT 3
4. INSERT 4

3/11/2010 CS 5633 Analysis of Algorithms

:";:\-', ' Example of a dynamic table

1. INSERT D 1
2. INSERT 2
3. INSERT 3
4. INSERT 4
5. INSERT overflow

3/11/2010 CS 5633 Analysis of Algorithms

St “ Example of a dynamic table

1. INSERT D 1
2. INSERT 2
3. INSERT 3
4. INSERT 4
5. INSERT overflow

3/11/2010 CS 5633 Analysis of Algorithms

:";:\-', ' Example of a dynamic table

1. INSERT D 1
2. INSERT 2
3. INSERT 3
4. INSERT 4
5. INSERT

3/11/2010 CS 5633 Analysis of Algorithms

St “ Example of a dynamic table

1 ON O B W N

3/11/2010

. INSERT
. INSERT
. INSERT
. INSERT
. INSERT
. INSERT
. INSERT

-

CS 5633 Analysis of Algorithms

S [o) N L, T I SO B 'S I I \NO I It

13

11

“ oY Worst-case analysis

YV e

Consider a sequence of 7 insertions. The
worst-case time to execute one insertion 1s
O(n). Therefore, the worst-case time for 7
insertions is 7 - O(n) = O(n?).

WRONG! In fact, the worst-case cost for
n insertions is only ®(n) << O(n?).

Let’s see why.

3/11/2010 CS 5633 Analysis of Algorithms

14

3/11/2010 CS 5633 Analysis of Algorithms 15

“ o Tighter analysis
Letc,= the cost of the 7 th insertion

= 1 + cost to double array size

3/11/2010 CS 5633 Analysis of Algorithms 16

“ o Tighter analysis
Letc,= the cost of the 7 th insertion

= 1 + cost to double array size

3/11/2010 CS 5633 Analysis of Algorithms 17

“ o Tighter analysis
Letc,= the cost of the 7 th insertion

= 1 + cost to double array size

3/11/2010 CS 5633 Analysis of Algorithms 18

-y

.) |\< ITHMS . . .
“ <~ Tighter analysis (continued)

Y

n
Cost of 7 insertions = Z C;
i=1

<n-+

Thus, the average cost of each dynamic-table
operation 1s O(n)/n = O(1).

3/11/2010 CS 5633 Analysis of Algorithms 19

ALGORITHMS

-
-y —

“* Amortized analysis

ny

An amortized analysis 1s any strategy for
analyzing a sequence of operations:

« compute the total cost of the sequence, OR

« amortized cost of an operation = average
cost per operation, averaged over the number
of operations 1n the sequence

e amortized cost can be small, even though a
single operation within the sequence might be
eXpensive

3/11/2010 CS 5633 Analysis of Algorithms

20

ALGORITHM
|m

I.‘:
-y —

~ " Amortized analysis

mny

Even though we’re taking averages, however,
probability 1s not involved!

» An amortized analysis guarantees the
average performance of each operation in
the worst case.

3/11/2010 CS 5633 Analysis of Algorithms

21

. ALGORITHMS
"o~ Types of amortized analyses

mny

Three common amortization arguments:
* the aggregate method,

* the accounting method,

* the potential method.

We’ve just seen an aggregate analysis.

The aggregate method, though simple, lacks the
precision of the other two methods. In particular,
the accounting and potential methods allow a
specific amortized cost to be allocated to each
operation.

3/11/2010 CS 5633 Analysis of Algorithms 22

ALGORITHMS

~ " Accounting method

* Charge i th operation a fictitious amortized cost ¢,
where $1 pays for 1 unit of work (i.e., time).

* This fee 1s consumed to perform the operation, and

» any amount not immediately consumed 1s stored in
the hank for use by subsequent operations.

* The bank balance must not go negative! We must

ensure that : :
Z c; < Z C;
for all ». =l =l

* Thus, the total amortized costs provide an upper
bound on the total true costs.

3/11/2010 CS 5633 Analysis of Algorithms 23

m Accountlng analysis of
- dynamic tables

Charge an amortized cost of ¢; = $3 for the i th
insertion.
* $1 pays for the immediate insertion.

* $2 is stored for later table doubling.

When the table doubles, $1 pays to move a
recent item, and $1 pays to move an old item.

Example:
$0/$0($0($0($2($2|$2|$2]| overflow

]

3/11/2010 CS 5633 Analysis of Algorithms

24

m Accounting analysis of
~" dynamic tables

Charge an amortized cost of ¢; = $3 for the i th
insertion.
* $1 pays for the immediate insertion.

* $2 is stored for later table doubling.

When the table doubles, $1 pays to move a
recent item, and $1 pays to move an old item.

Example:

]]]l]]]lloverﬂow

3/11/2010 CS 5633 Analysis of Algorithms 25

m Accountmg analysis of
- dynamic tables

Charge an amortized cost of ¢; = $3 for the i th
insertion.
* $1 pays for the immediate insertion.

* $2 is stored for later table doubling.

When the table doubles, $1 pays to move a
recent item, and $1 pays to move an old item.

Example:

EEEEEEEN

3/11/2010 CS 5633 Analysis of Algorithms

26

m Accounting analysis
~*' " (continued)

Key invariant: Bank balance never drops below O.
Thus, the sum of the amortized costs provides an
upper bound on the sum of the true costs.

i1 2 4 9 10

4
|
3
4

*Okay, so I lied. The first operation costs only $2, not $3.

3/11/2010 CS 5633 Analysis of Algorithms 27

ALGORITHMS

~ &" Incrementing a Binary Counter

Given: A -bit binary counter A[0,1,....k-1], initialized with

0,0,...,0. The counter supports the following INCREMENT
operation:

INCREMENT(A) // increases counter by 1
i< 0
while i<length(4) and A[7]=1 do
Alil <« 0
++
if i<length(4) then
Ali] < 1

° QlleStiOIl: In a sequence of #» INCREMENT operations, what is
the amortized runtime of one INCREMENT operation?

3/11/2010 CS 5633 Analysis of Algorithms 28

I .‘-:.(';o.ii ITHMS .
~ <" Binary Counter Example

1-0 0-1
Example for /=8 and n=9: fg; fg;

Initial counter 0000000 O> $1
After] increment 00000001
After 2 increments 000000 1 O> 51 $1

After 3 increments 000000 1 li $) %1
After 4 increments 00000100 51
After 5 increments 0000010 1§ 61 o
After 6 increments 000001 1 O> 91

After 7 increments 000001 1 1> 33 Sl
After & increments 0000100 O>
After 9 increments 00001001 $1
* The worst-case runtime of one INCREMENT operation 1s O(k)
 For n operations the total 1s O(nk)

3/11/2010 CS 5633 Analysis of Algorithms

ALGORITHMS

Y INCREMENT(A) // increases count
g o i ol | .
“ o Accounting Method »wie e ama
VY el ;:J:F[_;F] <0
o if /<length(4) then
. . Alil« 1
* Charge $2 to set a bit to 1 (0—1 flip)

> $1 pays for the actual flip

» Store $1 on the bit as credit to be used later when this bit is
flipped back to 0

* Charge $0 to set a bit to 0 (1—0 flip)

» Every 1 in the counter has $1 credit on it, which is used to
pay for this flip

3/11/2010 CS 5633 Analysis of Algorithms 30

ALGORITHMS

-y

mny

Example for /=8 and n=9:

Initial counter
After 1 increment
After 2 increments
After 3 increments
After 4 increments
After 5 increments
After 6 increments
After 7 increments
After 8 increments
After 9 increments

3/11/2010

00000000,
0000000 1
00000010§
000000112
00000100
00000101§
00000110
000001113
00001000

00001001

-0 0-—-1
flip flip
$1
$1 $1
$1
$2 $1
$1
$1 $1
$1
$3 $1
$1
Actual cost

.=~ Binary Counter Example

1-0 0-1
flip flip
$2
$0 $2
$2
$0 $2
$2
$0 $2
$2
$0 $2
$2

Amortized cost

CS 5633 Analysis of Algorithms

31

LGORITHM

INCREMENT(A) // increases count

‘ ACCOunting MethOd iv(l;lg]ZW) and A[i=1 do
if f<L@;;§1£¢L) then
Alil« 1

-

.GORIT
e
Y \‘

* Charge $2 to seta bitto 1 (0—1 flip)

> $1 pays for the actual flip

» Store $1 on the bit as credit to be used later when this bit is
flipped back to 0

* Charge $0 to set a bit to 0 (1—0 flip)

» Every 1 in the counter has $1 credit on it, which is used to
pay for this flip

= Since each INCREMENT operation 1s composed of one 0—>1 flip
and possibly multiple 1—0 flips, the amortized runtime of one
INCREMENT operation 1s O(1).

3/11/2010 CS 5633 Analysis of Algorithms 32

ALGORITHMS

:;‘ Potential method

Y

IDEA: View the bank account as the potential
energy (a la physics) of the dynamic set.
Framework:

e Start with an 1nitial data structure D,

* Operation / transforms D, ; to D..

* The cost of operation 7 1s ..

* Define a potential function ® : {D.; — R,
such that (D) = 0and ®(D;) = 0 for all /.

* The amortized cost ¢; with respect to @ 18
defined tobe ¢, = ¢, + D(D;) — D(D,).

3/11/2010 CS 5633 Analysis of Algorithms

33

ALGORITHMS

-y

mny

' ;‘;Q Understanding potentials

C;=C; +ED(D1') - (D(Di—ll

-
potential difference AD,

If AD.>0,t
work 1n the ¢

nen ¢; > ¢;. Operation i stores
ata structure for later use.

o If AD, <0, t

hen él- <c,. The data structure

delivers up stored work to help pay for

operation 1.

3/11/2010

CS 5633 Analysis of Algorithms

34

m- The amortized costs bound
«7 the true costs

The total amortized cost of # operations 1s

> ;= (c; +D(D;) - D(D,_))
=]

=1

Summing both sides.

3/11/2010 CS 5633 Analysis of Algorithms

35

m The amortized costs bound
" the true costs

The total amortized cost of # operations 1s

n
D¢
=1

Z (c; + ®(D;) —D(D,_)))

Z +®(D,)—D(Dy)

The series telescopes.

3/11/2010 CS 5633 Analysis of Algorithms

36

m— The amortized costs bound
~*' " the true costs

The total amortized cost of # operations 1s

2=

||
||'M: i M: T M:
e ek —

(¢; + @(D;) = D(Dyy))

c; +DP(D,)—D(D,y)

vV
o

i since ®(D,) = 0 and

3/11/2010 CS 5633 Analysis of Algorithms

37

m Potential analysis of table
«" doubling

Define the potential of the table after the ith insertion by
D(D,) = 2i — size, = 2i — 2 il (Assume that 2/°20'= ()

Immediately after an expansion i/ = size./ 2, and therefore
d(D)) = 0.

Immediately before an expansion i = size,, and therefore
O(D,)=1.

Therefore:
¢ (D(DO) — O,
* D(D;) =0 forall 7.

3/11/2010 CS 5633 Analysis of Algorithms 38

m— Potential analysis of table
Shb - doubling

Define the potential of the table after the ith insertion by
D(D,) = 2i — size, = 2i — 2 il (Assume that 2/°20'=())

[logi| [0 1

W K~ W |
—_— N BN DN

LN o0 Whn | W
— 00 O\ | W
— 00 3 | W

3/11/2010 CS 5633 Analysis of Algorithms 39

m Potential analysis of table
«" doubling

Define the potential of the table after the ith insertion by
D(D,) = 2i — size, = 2i — 2 il (Assume that 2/°20'=())

logs] @ I 120 2 2 3.5 2 & *°
I 2 3 4 5 6 7 8 9 10
size 2 4 4 8 8 8 8 16 16
c; 2 3 1 5 1 1 1 9 1
¢ |23 3 3 3 3 3 3 3 3
OD)bank; | 1 2 2 4 2 4 6 8 2 4
(D))
3/1 _CD(b) 1 é’fff‘gﬁ”{éﬁﬁ fw% sis of AT {3;”55‘%3%?2 2 2 2@@

I .‘-:.(;o.ii ITHMS . .

“ <~ Calculation of amortized costs

The amortized cost of the i th insertion is
¢;=c;+OD;) - DD, ;)

~
;4 (2i _ 9l log ﬂ) _ (2(1'_1) _ 2llog (z‘—lﬂ)
if 7 — 1 1s an exact power of 2,
1 + (21- _ 9l log ﬂ) _ (2(1-_1) _ 2llog (i—lﬂ)
otherwise.

|
A

-

forall i > 1

3/11/2010 CS 5633 Analysis of Algorithms 41

~ &~ Calculation (Case 1)

Case 1: 7 — 1 1s an exact power of 2.

&=i+ (2i - 7l log ﬂ) —(2(-1) - 7l log (i—lﬂ)
=74+ 2 — (2|_10g il 2|_10g (i—l)—|)
=i+2-2G-1)—-(@G-1))
=1 +2-2i1+2+i1-1
=3

3/11/2010 CS 5633 Analysis of Algorithms

42

r ‘-:.(ﬁ:(“).ll\{i"'l"H.,'\.iﬁ .
ey Calculation (Case 2)

Case 2: 7 — 1 1s not an exact power of 2.

&=1+ (2i - 7l log ﬂ) —(2(-1) - 7l log (i—lﬂ)
=14+2— (2|_log il 2’—10g (i—l)—‘)
=3

Therefore, n 1insertions cost ©(7) 1n the worst case.

3/11/2010 CS 5633 Analysis of Algorithms 43

ALGORITHM
im
| .

‘

-

=4~ Conclusions

* Amortized costs can provide a clean abstraction
of data-structure performance.

* Any of the analysis methods can be used when
an amortized analysis 1s called for, but each
method has some situations where 1t 1s arguably
the stmplest.

* Different schemes may work for assigning
amortized costs in the accounting method,
sometimes yielding radically different bounds.

3/11/2010 CS 5633 Analysis of Algorithms 44

