
CS 5633 Analysis of Algorithms 12/16/10

CS 5633 -- Spring 2010

Augmenting Data Structures
Carola Wenk

Slides courtesy of Charles Leiserson with small
changes by Carola Wenk

CS 5633 Analysis of Algorithms 22/16/10

Dictionaries and Dynamic Sets

Abstract Data Type (ADT) Dictionary :
Insert (x, D): inserts x into D
Delete (x, D): deletes x from D
Find (x, D): finds x in D

Popular implementation uses any balanced search
tree (not necessarily binary). This way each
operation takes O(log n) time.

D is a
dynamic set

CS 5633 Analysis of Algorithms 32/16/10

Dynamic order statistics

OS-SELECT(i, S): returns the i th smallest element
in the dynamic set S.

OS-RANK(x, S): returns the rank of x ∈ S in the
sorted order of S’s elements.

IDEA: Use a red-black tree for the set S, but keep
subtree sizes in the nodes.

key
size
key
sizeNotation for nodes:

CS 5633 Analysis of Algorithms 42/16/10

Example of an OS-tree

M
9

M
9

C
5

C
5

A
1

A
1

F
3

F
3

N
1

N
1

Q
1

Q
1

P
3

P
3

H
1

H
1

D
1

D
1

size[x] = size[left[x]] + size[right[x]] + 1

CS 5633 Analysis of Algorithms 52/16/10

Selection

OS-SELECT(x, i) ⊳ith smallest element in the
subtree rooted at x

k ← size[left[x]] + 1 ⊳ k = rank(x)
if i = k then return x
if i < k

then return OS-SELECT(left[x], i)
else return OS-SELECT(right[x], i – k)

Implementation trick: Use a sentinel
(dummy record) for NIL such that size[NIL] = 0.

(OS-RANK is in the textbook.)

CS 5633 Analysis of Algorithms 62/16/10

Example

M
9

M
9

C
5

C
5

A
1

A
1

F
3

F
3

N
1

N
1

Q
1

Q
1

P
3

P
3

H
1

H
1

D
1

D
1

OS-SELECT(root, 5)

i = 5
k = 6

M
9

M
9

C
5

C
5

i = 5
k = 2

i = 3
k = 2

F
3

F
3

i = 1
k = 1

H
1

H
1
H
1

H
1

Running time = O(h) = O(log n) for red-black trees.

CS 5633 Analysis of Algorithms 72/16/10

Data structure maintenance
Q. Why not keep the ranks themselves

in the nodes instead of subtree sizes?

A. They are hard to maintain when the
red-black tree is modified.

Modifying operations: INSERT and DELETE.
Strategy: Update subtree sizes when
inserting or deleting.

k ← size[left[x]] + 1 ⊳ k = rank(x)

CS 5633 Analysis of Algorithms 82/16/10

Example of insertion

M
9

M
9

C
5

C
5

A
1

A
1

F
3

F
3

N
1

N
1

Q
1

Q
1

P
3

P
3

H
1

H
1

D
1

D
1

INSERT(“K”)
M
10
M
10

C
6

C
6

F
4

F
4

H
2

H
2

K
1

K
1

CS 5633 Analysis of Algorithms 92/16/10

Handling rebalancing
Don’t forget that RB-INSERT and RB-DELETE may
also need to modify the red-black tree in order to
maintain balance.
• Recolorings: no effect on subtree sizes.
• Rotations: fix up subtree sizes in O(1) time.
Example:

C
11
C
11

E
16
E
16

7 3

4

C
16
C
16

E
8

E
87

3 4

∴RB-INSERT and RB-DELETE still run in O(log n) time.

CS 5633 Analysis of Algorithms 102/16/10

Data-structure augmentation
Methodology: (e.g., order-statistics trees)
1. Choose an underlying data structure (red-black

tree).
2. Determine additional information to be stored

in the data structure (subtree sizes).
3. Verify that this information can be maintained

for modifying operations (RB-INSERT, RB-
DELETE — don’t forget rotations).

4. Develop new dynamic-set operations that use
the information (OS-SELECT and OS-RANK).

These steps are guidelines, not rigid rules.

CS 5633 Analysis of Algorithms 112/16/10

Interval trees
Goal: To maintain a dynamic set of intervals,
such as time intervals.

low[i] = 7 10 = high[i]

i = [7, 10]

5
4 15 22

1711
8 18

19
23

Query: For a given query interval i, find an
interval in the set that overlaps i.

CS 5633 Analysis of Algorithms 122/16/10

Following the methodology

1. Choose an underlying data structure.
• Red-black tree keyed on low (left) endpoint.

int
m

int
m

2. Determine additional information to be
stored in the data structure.
• Store in each node x the interval int[x]

corresponding to the key, as well as the
largest value m[x] of all right interval
endpoints stored in the subtree rooted at x.

CS 5633 Analysis of Algorithms 132/16/10

17,19
23

17,19
23

Example interval tree

5,11
18

5,11
18

4,8
8

4,8
8

15,18
18

15,18
18

7,10
10

7,10
10

22,23
23

22,23
23

m[x] = max
high[int[x]]
m[left[x]]
m[right[x]]

red

int
m

int
m

CS 5633 Analysis of Algorithms 142/16/10

Modifying operations
3. Verify that this information can be maintained

for modifying operations.
• INSERT: Fix m’s on the way down.

6,20
30

6,20
30

11,15
19

11,15
19

19191414

3030

11,15
30

11,15
30

6,20
30

6,20
30

3030 1414

1919

• Rotations — Fixup = O(1) time per rotation:

Total INSERT time = O(log n); DELETE similar.

CS 5633 Analysis of Algorithms 152/16/10

New operations
4. Develop new dynamic-set operations that use

the information.
INTERVAL-SEARCH(i)

x ← root
while x ≠ NIL and (low[i] > high[int[x]]

or low[int[x]] > high[i])
do ⊳ i and int[x] don’t overlap

if left[x] ≠ NIL and low[i] ≤ m[left[x]]
then x ← left[x]
else x ← right[x]

return x

CS 5633 Analysis of Algorithms 162/16/10

Example 1: INTERVAL-SEARCH([14,16])

17,19
23

17,19
23

5,11
18

5,11
18

4,8
8

4,8
8

15,18
18

15,18
18

7,10
10

7,10
10

22,23
23

22,23
23

x

x ← root
[14,16] and [17,19] don’t overlap
14 ≤ 18 ⇒ x ← left[x]

14 16

CS 5633 Analysis of Algorithms 172/16/10

Example 1: INTERVAL-SEARCH([14,16])

17,19
23

17,19
23

5,11
18

5,11
18

4,8
8

4,8
8

15,18
18

15,18
18

7,10
10

7,10
10

22,23
23

22,23
23

x

[14,16] and [5,11] don’t overlap
14 > 8 ⇒ x ← right[x]

14 16

CS 5633 Analysis of Algorithms 182/16/10

Example 1: INTERVAL-SEARCH([14,16])

17,19
23

17,19
23

5,11
18

5,11
18

4,8
8

4,8
8

15,18
18

15,18
18

7,10
10

7,10
10

22,23
23

22,23
23

x

[14,16] and [15,18] overlap
return [15,18]

14 16

CS 5633 Analysis of Algorithms 192/16/10

Example 2: INTERVAL-SEARCH([12,14])

17,19
23

17,19
23

5,11
18

5,11
18

4,8
8

4,8
8

15,18
18

15,18
18

7,10
10

7,10
10

22,23
23

22,23
23

x

x ← root
[12,14] and [17,19] don’t overlap
12 ≤ 18 ⇒ x ← left[x]

12 14

CS 5633 Analysis of Algorithms 202/16/10

Example 2: INTERVAL-SEARCH([12,14])

17,19
23

17,19
23

5,11
18

5,11
18

4,8
8

4,8
8

15,18
18

15,18
18

7,10
10

7,10
10

22,23
23

22,23
23

x

[12,14] and [5,11] don’t overlap
12 > 8 ⇒ x ← right[x]

12 14

CS 5633 Analysis of Algorithms 212/16/10

Example 2: INTERVAL-SEARCH([12,14])

17,19
23

17,19
23

5,11
18

5,11
18

4,8
8

4,8
8

15,18
18

15,18
18

7,10
10

7,10
10

22,23
23

22,23
23

x

[12,14] and [15,18] don’t overlap
12 > 10 ⇒ x ← right[x]

12 14

CS 5633 Analysis of Algorithms 222/16/10

Example 2: INTERVAL-SEARCH([12,14])

17,19
23

17,19
23

5,11
18

5,11
18

4,8
8

4,8
8

15,18
18

15,18
18

7,10
10

7,10
10

22,23
23

22,23
23

x

x = NIL ⇒ no interval that
overlaps [12,14] exists

12 14

CS 5633 Analysis of Algorithms 232/16/10

Analysis
Time = O(h) = O(log n), since INTERVAL-
SEARCH does constant work at each level as it
follows a simple path down the tree.
List all overlapping intervals:
• Search, list, delete, repeat.
• Insert them all again at the end.

This is an output-sensitive bound.
Best algorithm to date: O(k + log n).

Time = O(k log n), where k is the total number
of overlapping intervals.

CS 5633 Analysis of Algorithms 242/16/10

Correctness
Theorem. Let L be the set of intervals in the
left subtree of node x, and let R be the set of
intervals in x’s right subtree.
• If the search goes right, then

{ i ′ ∈ L : i ′ overlaps i } = ∅.
• If the search goes left, then

{i ′ ∈ L : i ′ overlaps i } = ∅
⇒ {i ′ ∈ R : i ′ overlaps i } = ∅.

In other words, it’s always safe to take only 1
of the 2 children: we’ll either find something,
or nothing was to be found.

CS 5633 Analysis of Algorithms 252/16/10

Correctness proof
Proof. Suppose first that the search goes right.
• If left[x] = NIL, then we’re done, since L = ∅.
• Otherwise, the code dictates that we must have

low[i] > m[left[x]]. The value m[left[x]]
corresponds to the right endpoint of some
interval j ∈ L, and no other interval in L can
have a larger right endpoint than high(j).

Λ
high(j) = m[left[x]]

i
low(i)

• Therefore, {i ′ ∈ L : i ′ overlaps i } = ∅.

CS 5633 Analysis of Algorithms 262/16/10

Proof (continued)
Suppose that the search goes left, and assume that

{i ′ ∈ L : i ′ overlaps i } = ∅.
• Then, the code dictates that low[i] ≤ m[left[x]] =

high[j] for some j ∈ L.
• Since j ∈ L, it does not overlap i, and hence

high[i] < low[j].
• But, the binary-search-tree property implies that

for all i ′ ∈ R, we have low[j] ≤ low[i ′].
• But then {i ′ ∈ R : i ′ overlaps i } = ∅.

Λ

i j
i ′

CS 5633 Analysis of Algorithms 272/16/10

Orthogonal range searching

Input: n points in d dimensions
• E.g., representing a database of n records

each with d numeric fields
Query: Axis-aligned box (in 2D, a rectangle)

• Report on the points inside the box:
• Are there any points?
• How many are there?
• List the points.

CS 5633 Analysis of Algorithms 282/16/10

Orthogonal range searching

Input: n points in d dimensions
Query: Axis-aligned box (in 2D, a rectangle)

• Report on the points inside the box
Goal: Preprocess points into a data structure

to support fast queries
• Primary goal: Static data structure
• In 1D, we will also obtain a
dynamic data structure
supporting insert and delete

CS 5633 Analysis of Algorithms 292/16/10

1D range searching
In 1D, the query is an interval:

First solution:
• Sort the points and store them in an array

• Solve query by binary search on endpoints.
• Obtain a static structure that can list
k answers in a query in O(k + log n) time.

Goal: Obtain a dynamic structure that can list
k answers in a query in O(k + log n) time.

CS 5633 Analysis of Algorithms 302/16/10

1D range searching
In 1D, the query is an interval:

New solution that extends to higher dimensions:
• Balanced binary search tree

• New organization principle:
Store points in the leaves of the tree.

• Internal nodes store copies of the leaves
to satisfy binary search property:

• Node x stores in key[x] the maximum
key of any leaf in the left subtree of x.

CS 5633 Analysis of Algorithms 312/16/10

Example of a 1D range tree

11

66 88 1212 1414

1717

2626 3535 4141 4242

4343

5959 6161

key[x] is the maximum key of any leaf in the left subtree of x.

CS 5633 Analysis of Algorithms 322/16/10

Example of a 1D range tree

121211

66 88 1212 1414

1717

2626 3535 4141 4242

4343

5959 6161

66 2626 4141 5959

11 1414 3535 4343

424288

1717
xx

≤ x > x

key[x] is the maximum key of any leaf in the left subtree of x.

CS 5633 Analysis of Algorithms 332/16/10

1212

88 1212 1414

1717

2626 3535 4141

2626

1414

Example of a 1D range query

11

66 4242

4343

5959 6161

66 4141 5959

11

1212

88 1212 1414

1717

2626 3535 4141

2626

1414 3535 4343

424288

1717

RANGE-QUERY([7, 41])

xx

≤ x > x

CS 5633 Analysis of Algorithms 342/16/10

General 1D range query
root

split node

CS 5633 Analysis of Algorithms 352/16/10

Pseudocode, part 1:
Find the split node

1D-RANGE-QUERY(T, [x1, x2])
w ← root[T]
while w is not a leaf and (x2 ≤ key[w] or key[w] < x1)

do if x2 ≤ key[w]
then w ← left[w]
else w ← right[w]

// w is now the split node
[traverse left and right from w and report relevant subtrees]

CS 5633 Analysis of Algorithms 362/16/10

Pseudocode, part 2: Traverse
left and right from split node

1D-RANGE-QUERY(T, [x1, x2])
[find the split node]
// w is now the split node
if w is a leaf
then output the leaf w if x1 ≤ key[w] ≤ x2
else v ← left[w] // Left traversal

while v is not a leaf
do if x1 ≤ key[v]

then output the subtree rooted at right[v]
v ← left[v]

else v ← right[v]
output the leaf v if x1 ≤ key[v] ≤ x2
[symmetrically for right traversal]

w

CS 5633 Analysis of Algorithms 372/16/10

Analysis of 1D-RANGE-QUERY

Query time: Answer to range query represented
by O(log n) subtrees found in O(log n) time.
Thus:

• Can test for points in interval in O(log n) time.
• Can report all k points in interval in

O(k + log n) time.
• Can count points in interval in

O(log n) time
Space: O(n)
Preprocessing time: O(n log n)

CS 5633 Analysis of Algorithms 382/16/10

2D range trees

CS 5633 Analysis of Algorithms 392/16/10

Store a primary 1D range tree for all the points
based on x-coordinate.

2D range trees

Thus in O(log n) time we can find O(log n) subtrees
representing the points with proper x-coordinate.
How to restrict to points with proper y-coordinate?

CS 5633 Analysis of Algorithms 402/16/10

2D range trees
Idea: In primary 1D range tree of x-coordinate,
every node stores a secondary 1D range tree
based on y-coordinate for all points in the subtree
of the node. Recursively search within each.

CS 5633 Analysis of Algorithms 412/16/10

2D range tree example

1/11/1 2/72/7 3/53/5 5/85/8 6/66/6 7/27/2

9/39/311 33 66

22 77

55

5/85/8

2/72/7

6/66/6

3/53/5

9/39/3

7/27/2

1/11/1

88

66

33

77

22

55

5/85/8

2/72/7

3/53/5

1/11/1

88

55

77
6/66/6

9/39/3

7/27/2

66

33

2/72/7

1/11/1

11

5/85/8

3/53/5

556/66/6

7/27/2

22

Primary tree

Secondary trees

CS 5633 Analysis of Algorithms 422/16/10

Analysis of 2D range trees
Query time: In O(log2 n) = O((log n)2) time, we can
represent answer to range query by O(log2 n) subtrees.
Total cost for reporting k points: O(k + (log n)2).

Preprocessing time: O(n log n)

Space: The secondary trees at each level of the
primary tree together store a copy of the points.
Also, each point is present in each secondary
tree along the path from the leaf to the root.
Either way, we obtain that the space is O(n log n).

CS 5633 Analysis of Algorithms 432/16/10

d-dimensional range trees

Query time: O(k + logd n) to report k points.
Space: O(n logd – 1 n)
Preprocessing time: O(n logd – 1 n)

Each node of the secondary
y-structure stores a tertiary
z-structure representing the points in the subtree
rooted at the node, etc. Save one log factor using

fractional cascading

CS 5633 Analysis of Algorithms 442/16/10

Search in Subsets
Given: Two sorted arrays A1 and A, with A1⊆A

A query interval [l,r]
Task: Report all elements e in A1 and A with l ≤ e ≤ r
Idea: Add pointers from A to A1:

→ For each a∈A add a pointer to the
smallest element b∈ A1 with b≥a

Query: Find l∈A, follow pointer to A1. Both in A and A1
sequentially output all elements in [l,r].

3 10 19 23 30 37 59 62 80 90

10 19 30 62 80

Query:
[15,40]

A

A1

Runtime: O((log n + k) + (1 + k)) = O(log n + k))

CS 5633 Analysis of Algorithms 452/16/10

Search in Subsets (cont.)
Given: Three sorted arrays A1, A2, and A,

with A1 ⊆A and A2⊆A

3 10 19 23 30 37 59 62 80 90

10 19 30 62 80

Query:
[15,40]

A

A1
3 23 37 62 90A2

Runtime: O((log n + k) + (1+k) + (1+k)) = O(log n + k))

Range trees:

X
Y1 Y2

Y1∪Y2

CS 5633 Analysis of Algorithms 462/16/10

Fractional Cascading:
Layered Range Tree

Replace 2D range tree
with a layered range
tree, using sorted
arrays and pointers
instead of the
secondary range trees.

Preprocessing:
O(n log n)

Query:
O(log n + k)

CS 5633 Analysis of Algorithms 472/16/10

d-dimensional range trees

Query time: O(k + logd-1 n) to report k points,
uses fractional cascading in the
last dimension

Space: O(n logd – 1 n)
Preprocessing time: O(n logd – 1 n)

Best data structure to date:
Query time: O(k + logd – 1 n) to report k points.
Space: O(n (log n / log log n)d – 1)
Preprocessing time: O(n logd – 1 n)

