

CS 5633 -- Spring 2010

Augmenting Data Structures

Carola Wenk

Slides courtesy of Charles Leiserson with small changes by Carola Wenk

Dictionaries and Dynamic Sets

Abstract Data Type (ADT) Dictionary:

Insert (x, D): inserts x into D D is a

Delete (x, D): deletes x from D

Find (x, D): finds x in D

Popular implementation uses any balanced search tree (not necessarily binary). This way each operation takes $O(\log n)$ time.

Dynamic order statistics

OS-SELECT(i, S): returns the ith smallest element in the dynamic set S.

OS-RANK(x, S): returns the rank of $x \in S$ in the sorted order of S's elements.

IDEA: Use a red-black tree for the set *S*, but keep subtree sizes in the nodes.

Notation for nodes:

Example of an OS-tree

$$size[x] = size[left[x]] + size[right[x]] + 1$$

Selection

```
Implementation trick: Use a sentinel (dummy record) for NIL such that size[NIL] = 0.
```

OS-SELECT(x, i) $\triangleleft i$ th smallest element in the subtree rooted at x

```
k \leftarrow size[left[x]] + 1 \quad \forall k = rank(x)
if i = k then return x
if i < k
then return OS-SELECT(left[x], i)
else return OS-SELECT(right[x], i - k)
```

(OS-RANK is in the textbook.)

Example

OS-SELECT(*root*, 5)

OS-SELECT(x, i) > ith smallest element in the subtree rooted at x

```
k \leftarrow size[left[x]] + 1 \triangleright k = rank(x)

if i = k then return x

if i < k

then return OS-Select(left[x], i)

else return OS-Select(right[x], i - k)
```


Running time = $O(h) = O(\log n)$ for red-black trees.

Data structure maintenance

- Q. Why not keep the ranks themselves in the nodes instead of subtree sizes?
- A. They are hard to maintain when the red-black tree is modified.

Modifying operations: Insert and Delete.

Strategy: Update subtree sizes when inserting or deleting.

Example of insertion

Handling rebalancing

Don't forget that RB-Insert and RB-Delete may also need to modify the red-black tree in order to maintain balance.

- *Recolorings*: no effect on subtree sizes.
- *Rotations*: fix up subtree sizes in O(1) time.

 \therefore RB-Insert and RB-Delete still run in $O(\log n)$ time.

Data-structure augmentation

Methodology: (e.g., order-statistics trees)

- 1. Choose an underlying data structure (*red-black tree*).
- 2. Determine additional information to be stored in the data structure (*subtree sizes*).
- 3. Verify that this information can be maintained for modifying operations (RB-INSERT, RB-DELETE don't forget rotations).
- 4. Develop new dynamic-set operations that use the information (OS-SELECT and OS-RANK).

These steps are guidelines, not rigid rules.

Interval trees

Goal: To maintain a dynamic set of intervals, such as time intervals.

Query: For a given query interval i, find an interval in the set that overlaps i.

Following the methodology

- 1. Choose an underlying data structure.
 - Red-black tree keyed on low (left) endpoint.
- 2. Determine additional information to be stored in the data structure.
 - Store in each node x the interval int[x] corresponding to the key, as well as the largest value m[x] of all right interval endpoints stored in the subtree rooted at x.

Example interval tree

Modifying operations

- 3. Verify that this information can be maintained for modifying operations.
 - Insert: Fix *m*'s on the way down.
 - Rotations Fixup = O(1) time per rotation:

Total Insert time = $O(\log n)$; Delete similar.

New operations

4. Develop new dynamic-set operations that use the information.

```
INTERVAL-SEARCH(i)
    x \leftarrow root
    while x \neq NIL and (low[i] > high[int[x]])
                            or low[int[x]] > high[i])
       do \triangleleft i and int[x] don't overlap
            if left[x] \neq NIL and low[i] \leq m[left[x]]
                then x \leftarrow left[x]
                else x \leftarrow right[x]
    return x
```


Analysis

Time = $O(h) = O(\log n)$, since Interval-Search does constant work at each level as it follows a simple path down the tree.

List all overlapping intervals:

- Search, list, delete, repeat.
- Insert them all again at the end.

Time = $O(k \log n)$, where k is the total number of overlapping intervals.

This is an output-sensitive bound.

Best algorithm to date: $O(k + \log n)$.

Correctness

Theorem. Let L be the set of intervals in the left subtree of node x, and let R be the set of intervals in x's right subtree.

• If the search goes right, then

$$\{i' \in L : i' \text{ overlaps } i\} = \emptyset.$$

• If the search goes left, then

```
\{i' \in L : i' \text{ overlaps } i\} = \emptyset
 \Rightarrow \{i' \in R : i' \text{ overlaps } i\} = \emptyset.
```

In other words, it's always safe to take only 1 of the 2 children: we'll either find something, or nothing was to be found.

Correctness proof

Proof. Suppose first that the search goes right.

- If left[x] = NIL, then we're done, since $L = \emptyset$.
- Otherwise, the code dictates that we must have low[i] > m[left[x]]. The value m[left[x]] corresponds to the right endpoint of some interval $j \in L$, and no other interval in L can have a larger right endpoint than high(j).

$$high(j) = m[left[x]]$$

$$low(i)$$

• Therefore, $\{i' \in L : i' \text{ overlaps } i\} = \emptyset$.

Proof (continued)

Suppose that the search goes left, and assume that $\{i' \in L : i' \text{ overlaps } i\} = \emptyset$.

- Then, the code dictates that $low[i] \le m[left[x]] = high[j]$ for some $j \in L$.
- Since $j \in L$, it does not overlap i, and hence high[i] < low[j].
- But, the binary-search-tree property implies that for all $i' \in R$, we have $low[j] \le low[i']$.
- But then $\{i' \in R : i' \text{ overlaps } i\} = \emptyset$.

Orthogonal range searching

Input: *n* points in *d* dimensions

• E.g., representing a database of *n* records each with *d* numeric fields

Query: Axis-aligned box (in 2D, a rectangle)

- Report on the points inside the box:
 - Are there any points?
 - How many are there?
 - List the points.

Orthogonal range searching

Input: *n* points in *d* dimensions

Query: Axis-aligned box (in 2D, a rectangle)

Report on the points inside the box

Goal: Preprocess points into a data structure to support fast queries

- Primary goal: Static data structure
- In 1D, we will also obtain a dynamic data structure supporting insert and delete

1D range searching

In 1D, the query is an interval:

First solution:

- Sort the points and store them in an array
 - Solve query by binary search on endpoints.
 - Obtain a static structure that can list k answers in a query in $O(k + \log n)$ time.

Goal: Obtain a dynamic structure that can list k answers in a query in $O(k + \log n)$ time.

1D range searching

In 1D, the query is an interval:

New solution that extends to higher dimensions:

- Balanced binary search tree
 - New organization principle: Store points in the *leaves* of the tree.
 - Internal nodes store copies of the leaves to satisfy binary search property:
 - Node x stores in key[x] the maximum key of any leaf in the left subtree of x.

Example of a 1D range tree

key[x] is the maximum key of any leaf in the left subtree of x.

Example of a 1D range tree

key[x] is the maximum key of any leaf in the left subtree of x.

Example of a 1D range query

General 1D range query

Pseudocode, part 1: Find the split node

```
1D-RANGE-QUERY(T, [x_1, x_2])

w \leftarrow \text{root}[T]

while w is not a leaf and (x_2 \le key[w] \text{ or } key[w] < x_1)

do \text{ if } x_2 \le key[w]

then \ w \leftarrow left[w]

else \ w \leftarrow right[w]

// w is now the split node

[traverse left and right from w and report relevant subtrees]
```


Pseudocode, part 2: Traverse left and right from split node

```
1D-RANGE-QUERY(T, [x_1, x_2])
    [find the split node]
    // w is now the split node
    if w is a leaf
    then output the leaf w if x_1 \le key[w] \le x_2
                                                         // Left traversal
     else v \leftarrow left[w]
          while \nu is not a leaf
             do if x_1 \le key[v]
                 then output the subtree rooted at right[v]
                        v \leftarrow left[v]
                 else v \leftarrow right[v]
          output the leaf v if x_1 \le key[v] \le x_2
           [symmetrically for right traversal]
```


Analysis of 1D-Range-Query

Query time: Answer to range query represented by $O(\log n)$ subtrees found in $O(\log n)$ time. Thus:

- Can test for points in interval in $O(\log n)$ time.
- Can report all k points in interval in $O(k + \log n)$ time.
- Can count points in interval in O(log n) time

Space: O(n)

Preprocessing time: $O(n \log n)$

2D range trees

2D range trees

Store a *primary* 1D range tree for all the points based on *x*-coordinate.

Thus in $O(\log n)$ time we can find $O(\log n)$ subtrees representing the points with proper x-coordinate. How to restrict to points with proper y-coordinate?

2D range trees

Idea: In primary 1D range tree of x-coordinate, every node stores a secondary 1D range tree based on y-coordinate for all points in the subtree of the node. Recursively search within each.

2D range tree example

Primary tree

Analysis of 2D range trees

Query time: In $O(\log^2 n) = O((\log n)^2)$ time, we can represent answer to range query by $O(\log^2 n)$ subtrees. Total cost for reporting k points: $O(k + (\log n)^2)$.

Space: The secondary trees at each level of the primary tree together store a copy of the points. Also, each point is present in each secondary tree along the path from the leaf to the root. Either way, we obtain that the space is $O(n \log n)$.

Preprocessing time: $O(n \log n)$

d-dimensional range trees

z-structure representing the points in the subtree

rooted at the node, etc.

Save one log factor using fractional cascading

Query time: $O(k + \log^d n)$ to report k points.

Space: $O(n \log^{d-1} n)$

Preprocessing time: $O(n \log^{d-1} n)$

Search in Subsets

Given: Two sorted arrays A_1 and A, with $A_1 \subseteq A$

A query interval [l,r]

Task: Report all elements e in A_1 and A with $l \le e \le r$

Idea: Add pointers from A to A_1 :

 \rightarrow For each $a \in A$ add a pointer to the

smallest element $b \in A_1$ with $b \ge a$

Query: Find $l \in A$, follow pointer to A_1 . Both in A and A_1 sequentially output all elements in [l,r].

Runtime:
$$O((\log n + k) + (1 + k)) = O(\log n + k))$$

Search in Subsets (cont.)

Given: Three sorted arrays A_1 , A_2 , and A, with $A_1 \subseteq A$ and $A_2 \subseteq A$

Runtime: $O((\log n + k) + (1+k) + (1+k)) = O(\log n + k))$

Range trees:

Fractional Cascading: Layered Range Tree

Replace 2D range tree with a layered range tree, using sorted arrays and pointers instead of the secondary range trees.

Preprocessing:

 $O(n \log n)$

Query:

 $O(\log n + k)$

d-dimensional range trees

Query time: $O(k + \log^{d-1} n)$ to report k points, uses fractional cascading in the last dimension

Space: $O(n \log^{d-1} n)$

Preprocessing time: $O(n \log^{d-1} n)$

Best data structure to date:

Query time: $O(k + \log^{d-1} n)$ to report k points.

Space: O($n (\log n / \log \log n)^{d-1}$)

Preprocessing time: $O(n \log^{d-1} n)$