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" <" Dictionaries and Dynamic Sets

e
N
NV

Abstract Data Type (ADT) Dictionary :
Insert (x, D): insertsxinto D | )iq4

Delete (x, D): deletes x from D I dynamic set
Find (x, D):  finds x in D ’

Popular implementation uses any balanced search
tree (not necessarily binary). This way each
operation takes O(log n) time.

2/16/10 CS 5633 Analysis of Algorithms 2



“ <" Dynamic order statistics

™

OS-SELECT(Z, S): returns the ith smallest element
in the dynamic set S.

OS-RANK(x, S): returns the rank of x € S 1n the
sorted order of S’s elements.

IDEA: Use a red-black tree for the set S, but keep
subtree sizes in the nodes.

key
size

Notation for nodes:
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size|x]| = size|left|x]] + size[right|x]] + 1
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i m ' Selection

Implementatmn trick: Use a sentinel
(dummy record) for NIL such that size[NIL| = 0.

OS-SELECT(x, i) <ith smallest element in the
subtree rooted at x

k < size[left[x]] +1 < k=rank(x)

if =/ then return x

if i<k
then return OS-SELECT( /eff[x], 1)
else return OS-SELECT(7ight|x]|, i — k)

(OS-RANK 1s 1n the textbook.)
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OS-SELECT(x, /) > ith smallest element 1n the
. subtree rooted at x
Example k < size[lefi|x]] +1 bk =rank(x)
if /=% then return x
if i<k
OS- SELECT( 7yoot. 5 ) then return OS-SeLECT(/eff|x], 1)
’ else return OS-SELECT(right[x], i — k)

o
WY e

Running time = O(/) = O(log n) for red-black trees.
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i
=" Data structure maintenance

Q. Why not keep the ranks themselves
in the nodes instead of subtree sizes?

A. They are hard to maintain when the
red-black tree 1s modified.
k < size[left[x]] + 1 < k = rank(x)

Modifying operations: INSERT and DELETE.

Strategy: Update subtree sizes when
inserting or deleting.
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~ " Example of insertion

Ve

INSERT(“K™)
MY
2104
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~ " Handling rebalancing

N |
“\‘

Don t forget that RB-INSERT and RB-DELETE may
also need to modify the red-black tree in order to
maintain balance.

* Recolorings: no effect on subtree sizes.

* Rotations: fix up subtree sizes in O(1) time.

Example: 5 TS
NIy NIy
4 7

7 3 3 4
. RB-INSERT and RB-DELETE still run in O(log ) time.
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~ +* Data-structure augmentation

Methodology: ( )
1. Choose an underlying data structure (
).

2. Determine additional information to be stored
in the data structure ( ).

3. Verity that this information can be maintained
for modifying operations (

).

4. Develop new dynamic-set operations that use

the information ( ).

These steps are guidelines, not rigid rules.

2/16/10
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“ " Interval trees

mny

Goal: To maintain a dynamic set of intervals,
such as time intervals.

/i=[7, 10]

low[i] = 7 ~——= 10 = high][i]
5e 11 |7 e—e 19
4 e X 15 * 18 22e—23

Query: For a given query interval 7, find an
interval 1n the set that overlaps 1.
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“«" Following the methodology

[. Choose an underlying data structure.
* Red-black tree keyed on low (left) endpoint.

2. Determine additional information to be
stored in the data structure.

* Store 1n each node x the interval in#|x]
corresponding to the key, as well as the
largest value m[x] of all right interval
endpoints stored in the subtree rooted at x.

int
m
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~ " Example interval tree

WY e
low[i] =7 == 10 = highl|i]
5e o |] 17 e=—e 19
g 15— 18 22e—23

" high[int]x]]
m[x] = max< mlleft[x]]
_m|right|x]]
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: GORITHMS . . .
' ;:-" Moditying operations

3. Verify that this information can be maintained
for modifying operations.
* INSERT: Fix m’s on the way down.
* Rotations — Fixup = O(1) time per rotation:

"

Total INSERT time = O(log »); DELETE similar.
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F-\'-G ORITHMS
i e New operations

4, Develop new dynamic-set operations that use
the information.

INTERVAL-SEARCH(i)
X < root
while x = NIL and (low[i]| > high|int|x]]
or lowlint[x]] > high[i])
do < i and int[x] don’t overlap
if [eft[x] # NIL and low|[i]| < m[left[x]]
then x < /eft[x]
else x < right|x]
return x
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ALGORITHMS

low[i] =7 2 10 = highli]
3e *11 17»—=19
4oe——o38 |3e—=<]8 2223

14 =216

while x = NIL and (low[i] = highlint|x]]
or low|int|x]] > high|i])
do >/ and int[x] don’t overlap
if left[x] # NIL and low[i] < m|left|x]]
then x < /eft|x]

else x « right
X < root L]

[14,16] and [17,19] don’t overlap
14 < 18 = x < left[x]
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ALGORITHMS

low[i] =7 2 10 = highli]
3e *11 17»—=19
4oe——o38 |3e—=<]8 2223

14 =216

while x = NIL and (low[i] = highlint|x]]
or low|int|x]] > high|i])
do >/ and int[x] don’t overlap
if left[x] # NIL and low[i] < m|left|x]]
then x < /eft|x]
else x « right[x]

[14,16] and [5,11] don’t overlap
14 > 8 = x < right[x]
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\ *““‘ Example 1: INTERVAL- SEARCH([ 14,16])

mny

low[i] =7 2 10 = highli]
3e *11 17»—=19
4oe——o38 |3e—=<]8 2223

14 =216

while x = NIL and (low[i] = highlint|x]]
or low|int|x]] > high|i])
do >/ and int[x] don’t overlap
if left[x] # NIL and low[i] < m|left|x]]
then x < /eft|x]
else x « right[x]

[14,16] and [15,18] overlap
return [15,18]
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ALGORITHMS

low[i] =7 2 10 = highli]
3e *11 17»—=19
4oe——o38 |3e—=<]8 2223

12 o= 14

while x = NIL and (low[i] = highlint|x]]
or low|int|x]] > high|i])
do >/ and int[x] don’t overlap
if left[x] # NIL and low[i] < m|left|x]]
then x < /eft|x]

else x « right
X < root L]

[12,14] and [17,19] don’t overlap
12 < 18 = x < left[x]
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ALGORITHMS

low[i] =7 2 10 = highli]
3e *11 17»—=19
4oe——o38 |3e—=<]8 2223

12 o= 14

while x = NIL and (low[i] = highlint|x]]
or low|int|x]] > high|i])
do >/ and int[x] don’t overlap
if left[x] # NIL and low[i] < m|left|x]]
then x < /eft|x]
else x « right[x]

[12,14] and [5,11] don’t overlap
12 > 8 = x < right[x]
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ALGORITHMS

low[i] =7 2 10 = highli]
3e *11 17»—=19
4oe——o38 |3e—=<]8 2223

12 o= 14

while x = NIL and (low[i] = highlint|x]]
or low|int|x]] > high|i])
do >/ and int[x] don’t overlap
if left[x] # NIL and low[i] < m|left|x]]
then x < /eft|x]
else x « right[x]

[12,14] and [15,18] don’t overlap
12 > 10 = x < right|x]
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~ ﬁ“‘ Example 2% INTERVAL- SEARCH([12,14])

mny

low[i] =7 2 10 = highli]
3e *11 17»—=19
4oe——o38 |3e—=<]8 2223

12 o= 14

while x = NIL and (low[i] = highlint|x]]
or low|int|x]] > high|i])
do >/ and int[x] don’t overlap
if left[x] # NIL and low[i] < m|left|x]]
then x < /eft|x]
else x « right[x]

X

x = NIL = no interval that
overlaps [12,14] exists
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Time = O(h) = O(log n), since INTERVAL-
SEARCH does constant work at each level as 1t
follows a simple path down the tree.

List all overlapping intervals:
* Search, list, delete, repeat.

* Insert them all again at the end.
Time = O(k log n), where £ 1s the total number
of overlapping intervals.

This 1s an output-sensitive bound.
Best algorithm to date: O(k + log n).

2/16/10 CS 5633 Analysis of Algorithms
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ALGORITHMS
) . Correctness

Theorem Let L be the set of intervals in the
left subtree of node x, and let R be the set of
intervals 1n x’s right subtree.
e If the search goes right, then
{i"e L:i"overlapsi } = .

* If the search goes left, then

{i"e L:i"overlapsi } =

= {i' e R:i"overlapsi } = .
In other words, it’s always safe to take only 1

of the 2 children: we’ll either find something,

or nothing was to be found.
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ALGORITHMS
m,i\ !

-y

~ o~ Correctness proof

Proof. Suppose first that the search goes right.

o If /efi[x] = NIL, then we’re done, since L = .

* Otherwise, the code dictates that we must have
low[i] > m|left|x]]. The value m|/eft[x]]
corresponds to the right endpoint of some

interval ; € L, and no other interval in L can
have a larger right endpoint than Zig/h( j).

A l
high( j) = m{lefi[x] / = low(i)
» Therefore, {i' € L : i’ overlapsi } = .
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ALGORITHMS
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~~* Proof (continued)

Qv

Suppose that the search goes left, and assume that
{i" e L:i"overlapsi } =.

* Then, the code dictates that low|i]| < m[left|x]] =
high| j| for some j € L.

» Since j € L, it does not overlap 7, and hence
highli] < low| j].

* But, the binary-search-tree property 1mphes that
forall i" € R, we have low| j]| < low[i'].

*Butthen {i' € R : i’ overlapsi } = .
[ J

® ® @ ®
!

o ! A

2/16/10 CS 5633 Analysis of Algorithms

26



ALGOI
|
|

“ <~ Orthogonal range searching

Input: » points in d dimensions
* E.g., representing a database of »n records
cach with d numeric fields

Query: Axis-aligned box (in 2D, a rectangle)
» Report on the points inside the box:
* Are there any points? y
 How many are there?
* List the points. . o
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ALGORITHMS

~ o~ Orthogonal range searching

™

Input: » points in d dimensions

Query: Axis-aligned box (in 2D, a rectangle)
» Report on the points inside the box
Goal: Preprocess points into a data structure

to support fast queries
e Primary goal: Static data structure °~ .

* In 1D, we will also obtain a )
dynamic data structure . °

supporting insert and delete L)
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ALGORITHMS

“ <" 1D range searching

In 1D, the query 1s an interval:
*—0© @ o —©

First solution:
* Sort the points and store them 1n an array
* Solve query by binary search on endpoints.
 Obtain a static structure that can list
k answers 1n a query 1n O(k + log n) time.

Goal: Obtain a dynamic structure that can list
k answers 1n a query 1n O(k + log n) time.
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ALGORITHMS

——
-

‘ y——

o 1D range searching

In 1D, the query 1s an interval:
*—0© @ o —©

New solution that extends to higher dimensions:
» Balanced binary search tree
* New organization principle:
Store points 1n the leaves of the tree.
* Internal nodes store copies of the leaves
to satisty binary search property:
* Node x stores 1n key[x]| the maximum
key of any leaf in the left subtree of x.
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“ <" Example of a 1D range tree

(J
(J ([
(2 [ (2 [
(D (@ () () Bl
I {1 P[5 P 1EEJ 11 23 7] (51

key|x] 1s the maximum key of any leaf in the left subtree of x.
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“ <" Example of a 1D range tree

8 GQQF\

L D 35 D
1] (o) (12) (1] (26) (a) 3] (59,
I {1 P[5 P 1EEJ 11 23 7] (51

key|x] 1s the maximum key of any leaf in the left subtree of x.
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‘-:.cl_;om'rHMS
“<* Example of a 1D range query

:\\ =
(8 )

T s s
1] (6) i (12) (12

RANGE-QUERY([7, 41]) ”

5633 Analysis of Algorithms
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General 1D range query

‘ root

split node '

N

CS 5633 Analysis of Algorithms
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Pseudocode, part 1:
=" Find the split node

1D-RANGE-QUERY(7, [x,, x,])
w < root[ 7]
while w 1s not a leaf and (x, < key[w] or key[w] <x,)
do if x, < key|w]
then w < [efi|w]
else w < right|w]
// ' w 1s now the split node
[traverse left and right from w and report relevant subtrees]

N

2/16/10 CS 5633 Analysis of Algorithms

35

\ 4



IH l‘a

Pseudocode, part 2: Traverse
«7 Jeft and right from split node

1D-RANGE-QUERY(7, [x,, x,])
[find the split node]
// ' w 1s now the split node
if w1s a leaf
then output the leaf w if x, < key[w] < x,

else v < lefi|w] // Left traversal
while v is not a leaf
do if x, < key|v]
then output the subtree rooted at right|v]
v <« left[v]

else v < right|v]
output the leaf v if x, < key[v] < x,
[symmetrically for right traversal]

N
v
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: .G 0. RITHMS .
~ o~ Analysis of 1D-RANGE-QUERY

mny G

Query time: Answer to range query represented
by O(log n) subtrees found in O(log ») time.
Thus:
* Can test for points in interval in O(log ») time.
 Can report all £ points 1n interval in
O(k + log n) time.
* Can count points 1n interval in
O(log n) time

Space: O(n)
Preprocessing time: O(n log n)

N
\ 4
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| .jjj_\ 2D range trees

mny
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ALGORITHMS

:j;“'i_- 2D range trees

Store a primary 1D range tree for all the points
based on x-coordinate.

Thus 1n O(log n) time we can find O(log ») subtrees
representing the points with proper x-coordinate.
How to restrict to points with proper y-coordinate?

e <

2/16/10

A
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“<* 2D range trees M

Idea: In primary 1D range tree of x-coordinate,
every node stores a secondary 1D range tree
based on y-coordinate for all points 1n the subtree
of the node. Recursively search within each.

2/16/10
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S 2D range tree example

mny

Secondary trees

IIII|IIII|>
|IIII|'

Primary tree
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ALGORITHMS
:;:;‘ Analysis of 2D range trees

Query time: In O(log” n) = O((log n)?) time, we can
represent answer to range query by O(log” n) subtrees.

Total cost for reporting & points: O(k + (log n)?).

Space: The secondary trees at each level of the
primary tree together store a copy of the points.
Also, each point 1s present in each secondary

tree along the path from the leaf to the root.
Either way, we obtain that the space 1s O(n log n).

Preprocessing time: O(n log n)
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“ " d-dimensional range trees

mny

Each node of the secondary
y-structure stores a tertiary
z-structure representing the points in the subtree

rooted at the node, etc. ((gave one T ——
fractional cascading

Query time: O(k + log? n) to report k points.
Space: O(n log? ! n)
Preprocessing time: O(n log? ! n)
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ALGORITHMS
:o,,‘ Search in Subsets

Given: Two sorted arrays 4, and 4, with 4,cA4

A query interval [/, r]
Task: Report all elements ein 4,and 4 with/<e <r
Idea: Add pointers from A4 to 4:

— For each a4 add a pointer to the

smallest element be A4, with b=a
Query: Find /€4, follow pointer to 4,. Both in 4 and 4,
sequentially output all elements 1n [/,7].

Query: 413110 (19{23|30 (3759 (62 |80 |90

[15,40] X\&'\l‘/‘/ ~
4,10

19130 62|80

Runtime: O((logn + k) + (1 + k)) = O(log n + k))
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ALGORITHMS
:;.,,‘ Search in Subsets (cont.)

Given: Three sorted arrays 4, 4,, and 4,
with 4, <4 and A4 CA

Query: 4 |310]19/23130 (37 59|62 80 |90
[15400 [ 7—2>= =
4,110]19]30]62/80]  4,| 3|23]37 62/90

Runtime: O((log 7 + k) + (1+k) + (1+k)) = O(log 1 + k))

A\A\\\ /\ YQW
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=m0 Fractional Cascading:
Layered Range Tree

Replace 2D range tree
with a layered range
tree, using sorted

. (2,19) (7,10) (12,3) (17,62) (21,49) (41,95) (58,59) (93,70)
arrays and pomters (5,80) (8,37) (15,99)  (33,30) (52,23) (67,89)
instead of the

[3 i10[19[23—[30|3?149]59;6217078@195|9J

secondary range trees. s '

. [3T10T19]37]62]80799] IZi??|30_[4i)LS9]:§0—189[95|
Preprocessing: U IS U U
O(n log n)
Query:
O(log n + k)
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lm d—dlmensmnal range trees

Query time: O(k + log?’ n) to report k points,
uses fractional cascading in the
last dimension

Space: O(n log? ! n)

Preprocessing time: O(n log? ! n)

Best data structure to date:

Query time: O(k + log?~ ! n) to report k points.
Space: O(n (log n / log log n)? 1)
Preprocessing time: O(n log? ! n)
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