
CS 5633 Analysis of Algorithms 2/09/06

© 2001 by Charles E. Leiserson; small changes by Carola
Wenk

2/2/10 CS 5633 Analysis of Algorithms 1

CS 5633 -- Spring 2010

Sorting
Carola Wenk

Slides courtesy of Charles Leiserson with small
changes by Carola Wenk

2/2/10 CS 5633 Analysis of Algorithms 2

How fast can we sort?
All the sorting algorithms we have seen so far
are comparison sorts: only use comparisons to
determine the relative order of elements.
• E.g., insertion sort, merge sort, quicksort,

heapsort.
The best worst-case running time that we’ve
seen for comparison sorting is O(n log n) .

Is O(n log n) the best we can do?

Decision trees can help us answer this question.

2/2/10 CS 5633 Analysis of Algorithms 3

Decision-tree example
(Insertion sort)

a1:a2
a1:a2

a2:a3
a2:a3

a1a2a3
a1a2a3 a1:a3

a1:a3

a1a3a2
a1a3a2 a3a1a2

a3a1a2

a1:a3
a1:a3

a2a1a3
a2a1a3 a2:a3

a2:a3

a2a3a1
a2a3a1 a3a2a1

a3a2a1

Each internal node is labeled ai:aj for i, j ∈ {1, 2,…, n}.
•The left subtree shows subsequent comparisons if ai < aj.
•The right subtree shows subsequent comparisons if ai ≥ aj.

Sort 〈a1, a2, …, an〉 <

<

<

<

<

≥

≥

≥

≥

≥

2/2/10 CS 5633 Analysis of Algorithms 4

Decision-tree example
(Insertion sort)

a1:a2
a1:a2

a2:a3
a2:a3

a1a2a3
a1a2a3 a1:a3

a1:a3

a1a3a2
a1a3a2 a3a1a2

a3a1a2

a1:a3
a1:a3

a2a1a3
a2a1a3 a2:a3

a2:a3

a2a3a1
a2a3a1 a3a2a1

a3a2a1

Each internal node is labeled ai:aj for i, j ∈ {1, 2,…, n}.
•The left subtree shows subsequent comparisons if ai < aj.
•The right subtree shows subsequent comparisons if ai ≥ aj.

<

<

<

<

<

≥

≥

≥

≥

≥

Sort 〈a1, a2, a3〉
= 〈 9, 4, 6 〉:

CS 5633 Analysis of Algorithms 2/09/06

© 2001 by Charles E. Leiserson; small changes by Carola
Wenk

2/2/10 CS 5633 Analysis of Algorithms 5

Decision-tree example
(Insertion sort)

a1:a2
a1:a2

a2:a3
a2:a3

a1a2a3
a1a2a3 a1:a3

a1:a3

a1a3a2
a1a3a2 a3a1a2

a3a1a2

a1:a3
a1:a3

a2a1a3
a2a1a3 a2:a3

a2:a3

a2a3a1
a2a3a1 a3a2a1

a3a2a1

Each internal node is labeled ai:aj for i, j ∈ {1, 2,…, n}.
•The left subtree shows subsequent comparisons if ai < aj.
•The right subtree shows subsequent comparisons if ai ≥ aj.

<

<

<

<

<

≥

≥

≥

≥

Sort 〈a1, a2, a3〉
= 〈 9, 4, 6 〉:

9 ≥ 4

2/2/10 CS 5633 Analysis of Algorithms 6

Decision-tree example
(Insertion sort)

a1:a2
a1:a2

a2:a3
a2:a3

a1a2a3
a1a2a3 a1:a3

a1:a3

a1a3a2
a1a3a2 a3a1a2

a3a1a2

a1:a3
a1:a3

a2a1a3
a2a1a3 a2:a3

a2:a3

a2a3a1
a2a3a1 a3a2a1

a3a2a1

Each internal node is labeled ai:aj for i, j ∈ {1, 2,…, n}.
•The left subtree shows subsequent comparisons if ai < aj.
•The right subtree shows subsequent comparisons if ai ≥ aj.

<

<

<

<

<

≥

≥

≥ ≥

9 ≥ 6

Sort 〈a1, a2, a3〉
= 〈 9, 4, 6 〉:

2/2/10 CS 5633 Analysis of Algorithms 7

Decision-tree example
(Insertion sort)

a1:a2
a1:a2

a2:a3
a2:a3

a1a2a3
a1a2a3 a1:a3

a1:a3

a1a3a2
a1a3a2 a3a1a2

a3a1a2

a1:a3
a1:a3

a2a1a3
a2a1a3 a2:a3

a2:a3

a2a3a1
a2a3a1 a3a2a1

a3a2a1

Each internal node is labeled ai:aj for i, j ∈ {1, 2,…, n}.
•The left subtree shows subsequent comparisons if ai < aj.
•The right subtree shows subsequent comparisons if ai ≥ aj.

<

<

<

<

≥

≥

≥

≥

≥4 < 6

Sort 〈a1, a2, a3〉
= 〈 9, 4, 6 〉:

2/2/10 CS 5633 Analysis of Algorithms 8

Decision-tree example
(Insertion sort)

a1:a2
a1:a2

a2:a3
a2:a3

a1a2a3
a1a2a3 a1:a3

a1:a3

a1a3a2
a1a3a2 a3a1a2

a3a1a2

a1:a3
a1:a3

a2a1a3
a2a1a3 a2:a3

a2:a3

a2a3a1
a2a3a1 a3a2a1

a3a2a1

<

<

<

<

<

≥

≥

≥

≥

≥

Each leaf contains a permutation 〈π(1), π(2),…, π(n)〉 to
indicate that the ordering aπ(1) ≤ aπ(2) ≤ L ≤ aπ(n) has been
established.

4 < 6 ≤ 9

Sort 〈a1, a2, a3〉
= 〈 9, 4, 6 〉:

CS 5633 Analysis of Algorithms 2/09/06

© 2001 by Charles E. Leiserson; small changes by Carola
Wenk

2/2/10 CS 5633 Analysis of Algorithms 9

Decision-tree model
A decision tree models the execution of any
comparison sorting algorithm:

• One tree per input size n.
• The tree contains all possible comparisons (= if-branches)

that could be executed for any input of size n.
• The tree contains all comparisons along all possible

instruction traces (= control flows) for all inputs of size n.
• For one input, only one path to a leaf is executed.
• Running time = length of the path taken.
• Worst-case running time = height of tree.

2/2/10 CS 5633 Analysis of Algorithms 10

Lower bound for
comparison sorting

Theorem. Any decision tree that can sort n
elements must have height Ω(n log n) .
Proof. The tree must contain ≥ n! leaves, since
there are n! possible permutations. A height-h
binary tree has ≤ 2h leaves. Thus, n! ≤ 2h .

∴ h ≥ log(n!) (log is mono. increasing)
≥ log ((n/e)n) (Stirling’s formula)
= n log n – n log e

⇒ h ∈ Ω(n log n) .

2/2/10 CS 5633 Analysis of Algorithms 11

Lower bound for comparison
sorting

Corollary. Heapsort and merge sort are
asymptotically optimal comparison sorting
algorithms.

2/2/10 CS 5633 Analysis of Algorithms 12

Sorting in linear time

Counting sort: No comparisons between elements.
• Input: A[1 . . n], where A[j]∈{1, 2, …, k} .
• Output: B[1 . . n], sorted.
• Auxiliary storage: C[1 . . k] .

CS 5633 Analysis of Algorithms 2/09/06

© 2001 by Charles E. Leiserson; small changes by Carola
Wenk

2/2/10 CS 5633 Analysis of Algorithms 13

Counting sort

for i ← 1 to k
do C[i] ← 0

for j ← 1 to n
do C[A[j]] ← C[A[j]] + 1 ⊳ C[i] = |{key = i}|

for i ← 2 to k
do C[i] ← C[i] + C[i–1] ⊳ C[i] = |{key ≤ i}|

for j ← n downto 1
do B[C[A[j]]] ← A[j]

C[A[j]] ← C[A[j]] – 1

1.

2.

3.

4.

2/2/10 CS 5633 Analysis of Algorithms 14

Counting-sort example

A: 44 11 33 44 33

B:

1 2 3 4 5

C:
1 2 3 4

2/2/10 CS 5633 Analysis of Algorithms 15

Loop 1

A: 44 11 33 44 33

B:

1 2 3 4 5

C: 00 00 00 00
1 2 3 4

for i ← 1 to k
do C[i] ← 0

1.

2/2/10 CS 5633 Analysis of Algorithms 16

Loop 2

A: 44 11 33 44 33

B:

1 2 3 4 5

C: 00 00 00 11
1 2 3 4

for j ← 1 to n
do C[A[j]] ← C[A[j]] + 1 ⊳ C[i] = |{key = i}|

2.

CS 5633 Analysis of Algorithms 2/09/06

© 2001 by Charles E. Leiserson; small changes by Carola
Wenk

2/2/10 CS 5633 Analysis of Algorithms 17

Loop 2

A: 44 11 33 44 33

B:

1 2 3 4 5

C: 11 00 00 11
1 2 3 4

for j ← 1 to n
do C[A[j]] ← C[A[j]] + 1 ⊳ C[i] = |{key = i}|

2.

2/2/10 CS 5633 Analysis of Algorithms 18

Loop 2

A: 44 11 33 44 33

B:

1 2 3 4 5

C: 11 00 11 11
1 2 3 4

for j ← 1 to n
do C[A[j]] ← C[A[j]] + 1 ⊳ C[i] = |{key = i}|

2.

2/2/10 CS 5633 Analysis of Algorithms 19

Loop 2

A: 44 11 33 44 33

B:

1 2 3 4 5

C: 11 00 11 22
1 2 3 4

for j ← 1 to n
do C[A[j]] ← C[A[j]] + 1 ⊳ C[i] = |{key = i}|

2.

2/2/10 CS 5633 Analysis of Algorithms 20

Loop 2

A: 44 11 33 44 33

B:

1 2 3 4 5

C: 11 00 22 22
1 2 3 4

for j ← 1 to n
do C[A[j]] ← C[A[j]] + 1 ⊳ C[i] = |{key = i}|

2.

CS 5633 Analysis of Algorithms 2/09/06

© 2001 by Charles E. Leiserson; small changes by Carola
Wenk

2/2/10 CS 5633 Analysis of Algorithms 21

Loop 3

A: 44 11 33 44 33

B:

1 2 3 4 5

C: 11 00 22 22
1 2 3 4

C': 11 11 22 22

for i ← 2 to k
do C[i] ← C[i] + C[i–1] ⊳ C[i] = |{key ≤ i}|

3.

2/2/10 CS 5633 Analysis of Algorithms 22

Loop 3

A: 44 11 33 44 33

B:

1 2 3 4 5

C: 11 00 22 22
1 2 3 4

C': 11 11 33 22

for i ← 2 to k
do C[i] ← C[i] + C[i–1] ⊳ C[i] = |{key ≤ i}|

3.

2/2/10 CS 5633 Analysis of Algorithms 23

Loop 3

A: 44 11 33 44 33

B:

1 2 3 4 5

C: 11 00 22 22
1 2 3 4

C': 11 11 33 55

for i ← 2 to k
do C[i] ← C[i] + C[i–1] ⊳ C[i] = |{key ≤ i}|

3.

2/2/10 CS 5633 Analysis of Algorithms 24

Loop 4

A: 44 11 33 44 33

B: 33

1 2 3 4 5

C: 11 11 33 55
1 2 3 4

C': 11 11 33 55

for j ← n downto 1
do B[C[A[j]]] ← A[j]

C[A[j]] ← C[A[j]] – 1

4.

CS 5633 Analysis of Algorithms 2/09/06

© 2001 by Charles E. Leiserson; small changes by Carola
Wenk

2/2/10 CS 5633 Analysis of Algorithms 25

Loop 4

A: 44 11 33 44 33

B: 33

1 2 3 4 5

C: 11 11 33 55
1 2 3 4

C': 11 11 22 55

for j ← n downto 1
do B[C[A[j]]] ← A[j]

C[A[j]] ← C[A[j]] – 1

4.

2/2/10 CS 5633 Analysis of Algorithms 26

Loop 4

A: 44 11 33 44 33

B: 33 44

1 2 3 4 5

C: 11 11 22 55
1 2 3 4

C': 11 11 22 55

for j ← n downto 1
do B[C[A[j]]] ← A[j]

C[A[j]] ← C[A[j]] – 1

4.

2/2/10 CS 5633 Analysis of Algorithms 27

Loop 4

A: 44 11 33 44 33

B: 33 44

1 2 3 4 5

C: 11 11 22 55
1 2 3 4

C': 11 11 22 44

for j ← n downto 1
do B[C[A[j]]] ← A[j]

C[A[j]] ← C[A[j]] – 1

4.

2/2/10 CS 5633 Analysis of Algorithms 28

Loop 4

A: 44 11 33 44 33

B: 33 33 44

1 2 3 4 5

C: 11 11 22 44
1 2 3 4

C': 11 11 22 44

for j ← n downto 1
do B[C[A[j]]] ← A[j]

C[A[j]] ← C[A[j]] – 1

4.

CS 5633 Analysis of Algorithms 2/09/06

© 2001 by Charles E. Leiserson; small changes by Carola
Wenk

2/2/10 CS 5633 Analysis of Algorithms 29

Loop 4

A: 44 11 33 44 33

B: 33 33 44

1 2 3 4 5

C: 11 11 22 44
1 2 3 4

C': 11 11 11 44

for j ← n downto 1
do B[C[A[j]]] ← A[j]

C[A[j]] ← C[A[j]] – 1

4.

2/2/10 CS 5633 Analysis of Algorithms 30

Loop 4

A: 44 11 33 44 33

B: 11 33 33 44

1 2 3 4 5

C: 11 11 11 44
1 2 3 4

C': 11 11 11 44

for j ← n downto 1
do B[C[A[j]]] ← A[j]

C[A[j]] ← C[A[j]] – 1

4.

2/2/10 CS 5633 Analysis of Algorithms 31

Loop 4

A: 44 11 33 44 33

B: 11 33 33 44

1 2 3 4 5

C: 11 11 11 44
1 2 3 4

C': 00 11 11 44

for j ← n downto 1
do B[C[A[j]]] ← A[j]

C[A[j]] ← C[A[j]] – 1

4.

2/2/10 CS 5633 Analysis of Algorithms 32

Loop 4

A: 44 11 33 44 33

B: 11 33 33 44 44

1 2 3 4 5

C: 00 11 11 44
1 2 3 4

C': 00 11 11 44

for j ← n downto 1
do B[C[A[j]]] ← A[j]

C[A[j]] ← C[A[j]] – 1

4.

CS 5633 Analysis of Algorithms 2/09/06

© 2001 by Charles E. Leiserson; small changes by Carola
Wenk

2/2/10 CS 5633 Analysis of Algorithms 33

Loop 4

A: 44 11 33 44 33

B: 11 33 33 44 44

1 2 3 4 5

C: 00 11 11 44
1 2 3 4

C': 00 11 11 33

for j ← n downto 1
do B[C[A[j]]] ← A[j]

C[A[j]] ← C[A[j]] – 1

4.

2/2/10 CS 5633 Analysis of Algorithms 34

Analysis
for i ← 1 to k

do C[i] ← 0

Θ(n)

Θ(k)

Θ(n)

Θ(k)

for j ← 1 to n
do C[A[j]] ← C[A[j]] + 1

for i ← 2 to k
do C[i] ← C[i] + C[i–1]

for j ← n downto 1
do B[C[A[j]]] ← A[j]

C[A[j]] ← C[A[j]] – 1
Θ(n + k)

1.

2.

3.

4.

2/2/10 CS 5633 Analysis of Algorithms 35

Running time

If k = O(n), then counting sort takes Θ(n) time.
• But, sorting takes Ω(n log n) time!
• Where’s the fallacy?

Answer:
• Comparison sorting takes Ω(n log n) time.
• Counting sort is not a comparison sort.
• In fact, not a single comparison between

elements occurs!
2/2/10 CS 5633 Analysis of Algorithms 36

Stable sorting

Counting sort is a stable sort: it preserves
the input order among equal elements.

A: 44 11 33 44 33

B: 11 33 33 44 44

Exercise: What other sorts have this property?

CS 5633 Analysis of Algorithms 2/09/06

© 2001 by Charles E. Leiserson; small changes by Carola
Wenk

2/2/10 CS 5633 Analysis of Algorithms 37

Radix sort

• Origin: Herman Hollerith’s card-sorting
machine for the 1890 U.S. Census. (See
Appendix .)

• Digit-by-digit sort.
• Hollerith’s original (bad) idea: sort on

most-significant digit first.
• Good idea: Sort on least-significant digit

first with an auxiliary stable sorting
algorithm (like counting sort).

2/2/10 CS 5633 Analysis of Algorithms 38

Operation of radix sort

3 2 9
4 5 7
6 5 7
8 3 9
4 3 6
7 2 0
3 5 5

7 2 0
3 5 5
4 3 6
4 5 7
6 5 7
3 2 9
8 3 9

7 2 0
3 2 9
4 3 6
8 3 9
3 5 5
4 5 7
6 5 7

3 2 9
3 5 5
4 3 6
4 5 7
6 5 7
7 2 0
8 3 9

2/2/10 CS 5633 Analysis of Algorithms 39

• Sort on digit t

Correctness of radix sort
Induction on digit position
• Assume that the numbers

are sorted by their low-order
t – 1 digits.

7 2 0
3 2 9
4 3 6
8 3 9
3 5 5
4 5 7
6 5 7

3 2 9
3 5 5
4 3 6
4 5 7
6 5 7
7 2 0
8 3 9

2/2/10 CS 5633 Analysis of Algorithms 40

• Sort on digit t

Correctness of radix sort
Induction on digit position
• Assume that the numbers

are sorted by their low-order
t – 1 digits.

7 2 0
3 2 9
4 3 6
8 3 9
3 5 5
4 5 7
6 5 7

3 2 9
3 5 5
4 3 6
4 5 7
6 5 7
7 2 0
8 3 9

Two numbers that differ in
digit t are correctly sorted.

CS 5633 Analysis of Algorithms 2/09/06

© 2001 by Charles E. Leiserson; small changes by Carola
Wenk

2/2/10 CS 5633 Analysis of Algorithms 41

• Sort on digit t

Correctness of radix sort
Induction on digit position
• Assume that the numbers

are sorted by their low-order
t – 1 digits.

7 2 0
3 2 9
4 3 6
8 3 9
3 5 5
4 5 7
6 5 7

3 2 9
3 5 5
4 3 6
4 5 7
6 5 7
7 2 0
8 3 9

Two numbers that differ in
digit t are correctly sorted.
Two numbers equal in digit t
are put in the same order as
the input ⇒ correct order.

2/2/10 CS 5633 Analysis of Algorithms 42

Analysis of radix sort
• Sort n computer words of b bits each.
• View each word as having b/r base-2r digits.
Example: 32-bit word (b=32)

r = 1: 32 base-2 digits
⇒ b/r = 32 passes of counting sort on base-2 digits

8 8 8 8
r = 8: 32/8 base-28 digits
⇒ b/r = 4 passes of counting sort on base-28 digits

16 16
r = 16: 32/16 base-216 digits
⇒ b/r = 2 passes of counting sort on base-216 digits

2/2/10 CS 5633 Analysis of Algorithms 43

Analysis of radix sort

• Sort n computer words of b bits each.
• View each word as having b/r base-2r digits.
• Assume counting sort is the auxiliary stable sort.
• Make b/r passes of counting sort on base-2r digits

How many passes should we make?

2/2/10 CS 5633 Analysis of Algorithms 44

Analysis (continued)
Recall: Counting sort takes Θ(n + k) time to
sort n numbers in the range from 0 to k – 1.
• If each b-bit word is broken into r-bit pieces,
each pass of counting sort takes Θ(n + 2r) time.
• Since there are b/r passes, we have

()




 +Θ= rn

r
bbnT 2),(.

• Choose r to minimize T(n, b):
Increasing r means fewer passes, but as r >> log n,
the time grows exponentially.

CS 5633 Analysis of Algorithms 2/09/06

© 2001 by Charles E. Leiserson; small changes by Carola
Wenk

2/2/10 CS 5633 Analysis of Algorithms 45

Choosing r
()





 +Θ= rn

r
bbnT 2),(

Minimize T(n, b) by differentiating and setting to 0.
Or, just observe that we don’t want 2r > n, and
there’s no harm asymptotically in choosing r as
large as possible subject to this constraint.

>

Choosing r = log n implies T(n, b) = Θ(bn/log n) .

2/2/10 CS 5633 Analysis of Algorithms 46

Radix Sort with optimized r

• Example:
For numbers in the range from 0 to nd – 1, we
have b = d log n ⇒ radix sort runs in Θ(d n) time.

• Notice that counting sort runs in O(n+k) time,
where all numbers are in the range 1 through k.

• Assume counting sort is the auxiliary stable sort.
• Sort n computer words of b bits each.

The runtime of radix sort is: T(n, b) = Θ(bn/log n) .

2/2/10 CS 5633 Analysis of Algorithms 47

Conclusions

Example (32-bit numbers):
• At most 3 passes when sorting ≥ 2000 numbers.
• Merge sort and quicksort do at least log 2000

= 11 passes.

In practice, radix sort is fast for large inputs, as
well as simple to code and maintain.

Downside: Unlike quicksort, radix sort displays
little locality of reference, and thus a well-tuned
quicksort fares better on modern processors,
which feature steep memory hierarchies.

2/2/10 CS 5633 Analysis of Algorithms 48

Appendix: Punched-card
technology

• Herman Hollerith (1860-1929)
• Punched cards
• Hollerith’s tabulating system
• Operation of the sorter
• Origin of radix sort
• “Modern” IBM card

Return to last
slide viewed.

CS 5633 Analysis of Algorithms 2/09/06

© 2001 by Charles E. Leiserson; small changes by Carola
Wenk

2/2/10 CS 5633 Analysis of Algorithms 49

Herman Hollerith
(1860-1929)

• The 1880 U.S. Census took almost
10 years to process.

• While a lecturer at MIT, Hollerith
prototyped punched-card technology.

• His machines, including a “card sorter,” allowed
the 1890 census total to be reported in 6 weeks.

• He founded the Tabulating Machine Company in
1911, which merged with other companies in 1924
to form International Business Machines.

2/2/10 CS 5633 Analysis of Algorithms 50

Punched cards
• Punched card = data record.
• Hole = value.
• Algorithm = machine + human operator.

Replica of punch
card from the
1900 U.S. census.
[Howells 2000]

2/2/10 CS 5633 Analysis of Algorithms 51

Hollerith’s
tabulating
system
•Pantograph card
punch

•Hand-press reader
•Dial counters
•Sorting box

Figure from
[Howells 2000].

2/2/10 CS 5633 Analysis of Algorithms 52

Operation of the sorter
• An operator inserts a card into

the press.
• Pins on the press reach through

the punched holes to make
electrical contact with mercury-
filled cups beneath the card.

• Whenever a particular digit
value is punched, the lid of the
corresponding sorting bin lifts.

• The operator deposits the card
into the bin and closes the lid.

• When all cards have been processed, the front panel is opened, and
the cards are collected in order, yielding one pass of a stable sort.

Hollerith Tabulator, Pantograph, Press, and Sorter

CS 5633 Analysis of Algorithms 2/09/06

© 2001 by Charles E. Leiserson; small changes by Carola
Wenk

2/2/10 CS 5633 Analysis of Algorithms 53

Origin of radix sort

Hollerith’s original 1889 patent alludes to a most-
significant-digit-first radix sort:

“The most complicated combinations can readily be
counted with comparatively few counters or relays by first
assorting the cards according to the first items entering
into the combinations, then reassorting each group
according to the second item entering into the combination,
and so on, and finally counting on a few counters the last
item of the combination for each group of cards.”

Least-significant-digit-first radix sort seems to be
a folk invention originated by machine operators.

2/2/10 CS 5633 Analysis of Algorithms 54

“Modern” IBM card

So, that’s why text windows have 80 columns!

Produced by
the WWW
Virtual Punch-
Card Server.

• One character per column.

