Theorem: If a range space S = (P, R) over a set P of size n has VC-dimension k, then the number of distinct

ranges satisfies
k
n
R <) <Z>

=0

Proof: Here is a sketch of the proof, which is induction on n and k. (Details can be found in the book “The
Probabilistic Method,” by Alon and Spencer, Wiley, 2000.) Let g(k,n) = Zf:o (") It is easy to prove

by induction that this function satisfies the recurrence

The basis of the induction is trivial. Otherwise, for any x € P, we will decompose the range space into two
range spaces. For the first range space we “remove” x from all ranges. Define S — 2z = (P — {a}, R —),
where R — x = {r — {z} | r € R}. Clearly S — z has n — 1 elements and its VC-dimension is at most k.
For the second range space we “factor out” = by considering just the ranges of R that are identical except
that one contains x and one does not. Define define S\ z = (P —{z}, R\ z), where R\x = {r € R| z ¢
r,rU{z} € R}. Clearly, S \ = has n — 1 elements but (because we have included ranges of R that both
include and exclude x) its VC-dimension is at most k£ — 1.

Finally, observe that every subset of R can be put in 1-1 correspondence with the one of the subsets from
the union of these two range spaces. (Think about this!) Thus, we have

IRl = |[R—z|+|R\z| < glk,n—1)+g(k—1,n—1) = g(k,n),
which completes the proof.

Canonical Subsets: A common approach used in solving almost all range queries is to represent P as a collection of
canonical subsets {S1,Sa,...,Sk}, each S; C S (where k is generally a function of n and the type of ranges),
such that any set can be formed as the disjoint union of canonical subsets. Note that these subsets may generally
overlap each other.

There are many ways to select canonical subsets, and the choice affects the space and time complexities. For
example, the canonical subsets might be chosen to consist of n singleton sets, each of the form {p; }. This would
be very space efficient, since we need only O(n) total space to store all the canonical subsets, but in order to
answer a query involving % objects we would need & sets. (This might not be bad for reporting queries, but it
would be too long for counting queries.) At the other extreme, we might let the canonical subsets be the power
set of P. Now, any query could be answered with a single canonical subset, but we would have 2™ different
canonical subsets to store. (A more realistic solution would be to use the set of all ranges, but this would still
be quite large for most interesting range spaces.) The goal of a good range data structure is to strike a balance
between the total number of canonical subsets (space) and the number of canonical subsets needed to answer a
query (time).

One-dimensional range queries: Before consider how to solve general range queries, let us consider how to an-
swer 1-dimension range queries, or interval queries. Let us assume that we are given a set of points P =
{p1,p2,...,pn} on the line, which we will preprocess into a data structure. Then, given an interval [x,, Zp,],
the goal is to report all the points lying within the interval. Ideally we would like to answer a query in time
O(log n+ k) time, where k is the number of points reported (an output sensitive result). Range counting queries
can be answered in O(logn) time with minor modifications.

Clearly one way to do this is to simply sort the points, and apply binary search to find the first point of P that
is greater than or equal to x,, and less than or equal to x;, and then list all the points between. This will not
generalize to higher dimensions, however.

Instead, sort the points of P in increasing order and store them in the leaves of a balanced binary search tree.
Each internal node of the tree is labeled with the largest key appearing in its left child. We can associate each

Lecture Notes 81 CMSC 754

node of this tree (implicitly or explicitly) with the subset of points stored in the leaves that are descendents of
this node. This gives rise to the O(n) canonical subsets. For now, these canonical subsets will not be stored
explicitly as part of the data structure, but this will change later when we talk about range trees. This is illustrated
in the figure below.

)
Q {9,12,14,15} @
e {47} @ {17,20} @ @
I Y OIW.ORE OO OO

0 (8] (])| [o) [e) [[ss)) (7] [oo]| ()] 28 [es] [e7) [2o) [od]
u v

Figure 66: Canonical sets for interval queries.

We claim that the canonical subsets corresponding to any range can be identified in O(logn) time from this
structure. Given any interval [z,,], we search the tree to find the leftmost leaf u whose key is greater than
or equal to x;, and the rightmost leaf v whose key is less than or equal to x;,. Clearly all the leaves between
u and v, together possibly with « and v, constitute the points that lie within the range. If key(u) = x, then
we include u’s canonical (single point) subset and if key(v) = xj; then we do the same for v. To form the
remaining canonical subsets, we take the subsets of all the maximal subtrees lying between u and v.

Here is how to compute these subtrees. The search paths to v and v may generally share some common subpath,
starting at the root of the tree. Once the paths diverge, as we follow the left path to u, whenever the path goes to
the left child of some node, we add the canonical subset associated with its right child. Similarly, as we follow
the right path to v, whenever the path goes to the right child, we add the canonical subset associated with its left
child.

To answer a range reporting query we simply traverse these canonical subtrees, reporting the points of their
leaves. Each tree can be traversed in time proportional to the number of leaves in each subtree. To answer a
range counting query we store the total number of points in each subtree (as part of the preprocessing) and then
sum all of these over all the canonical subtrees.

Since the search paths are of length O(log n), it follows that O(log n) canonical subsets suffice to represent the
answer to any query. Thus range counting queries can be answered in O(logn) time. For reporting queries,
since the leaves of each subtree can be listed in time that is proportional to the number of leaves in the tree (a
basic fact about binary trees), it follows that the total time in the search is O(log n + k), where k is the number
of points reported.

In summary, 1-dimensional range queries can be answered in O(log n) time, using O(n) storage. This concept
of finding maximal subtrees that are contained within the range is fundamental to all range search data structures.
The only question is how to organize the tree and how to locate the desired sets. Let see next how can we extend
this to higher dimensional range queries.

Kd-trees: The natural question is how to extend 1-dimensional range searching to higher dimensions. First we will
consider kd-trees. This data structure is easy to implement and quite practical and useful for many different
types of searching problems (nearest neighbor searching for example). However it is not the asymptotically
most efficient solution for the orthogonal range searching, as we will see later.

Lecture Notes 82 CMSC 754

Lecture 23: Orthogonal Range Trees
Reading: Chapter 5 in the 4M’s.

Orthogonal Range Trees: Last time we saw that kd-trees could be used to answer orthogonal range queries in the
plane in O(y/n + k) time. Today we consider a better data structure, called orthogonal range trees.

An orthogonal range tree is a data structure which, in all dimensions d > 2, uses O(n log(d_l) n) space, and
can answer orthogonal rectangular range queries in O(log(dfl) n + k) time, where k is the number of points
reported. Preprocessing time is the same as the space bound. Thus, in the plane, we can answer range queries
in time O(logn) and space O(nlogn). We will present the data structure in two parts, the first is a version that
can answer queries in O(log2 n) time in the plane, and then we will show how to improve this in order to strip
off a factor of log n from the query time.

Multi-level Search Trees: The data structure is based on the concept of a multi-level search tree. In this method,
a complex search is decomposed into a constant number of simpler range searches. We cascade a number of
search structures for simple ranges together to answer the complex range query. In this case we will reduce a
d-dimensional range search to a series of 1-dimensional range searches.

Suppose you have a query which can be stated as the intersection of a small number of simpler queries. For
example, a rectangular range query in the plane can be stated as two range queries: Find all the points whose z-
coordinates are in the range [Q.z;,, Q.2 ;] and all the points whose y-coordinates are in the range [Q.v10, Q-Yni)-
Let us consider how to do this for 2-dimensional range queries, and then consider how to generalize the process.
First, we assume that we have preprocessed the data by building a range tree for the first range query, which in
this case is just a 1-dimensional range tree for the x-coordinates. Recall that this is just a balanced binary tree
on these points sorted by z-coordinates. Also recall that each node of this binary tree is implicitly associated
with a canonical subset of points, that is, the points lying in the subtree rooted at this node.

Observe that the answer to any 1-dimensional range query can be represented as the disjoint union of a small
collection of m = O(log n) canonical subsets, {S1, S, . .., Sm }, where each subset corresponds to a node ¢ in
the range tree. This constitutes the first level of the search tree. To continue the preprocessing, for the second
level, for each node ¢ in this z-range tree, we build an auxiliary tree, t,,,, each of which is a y-coordinate range
tree, which contains all the points in the canonical subset associated with .

The final data structure consists of two levels: an z-range tree, such that each node in this tree points to auxiliary
y-range tree. This notion of a tree of trees is basic to solving range queries by leveling. (For example, for
d-dimensional range trees, we will have d-levels of trees.)

Query Processing: Given such a 2-level tree, let us consider how to answer a rectangular range query Q. First, we
determine the nodes of the tree that satisfy the = portion of the range query. Each such node ¢ is associated
with a canonical set Sy, and the disjoint union of these sets O(logn) sets consistute all the points of the data set
that lie within the x portion of the range. Thus to finish the query, we need to find out which points from each
canonical subset lie within the range of y-coordinates. To do this, for each such node ¢, we access the auxiliary
tree for this node, t,,, and perform a 1-dimensional range search on the y-range of the query. This process is
illustrated in the following figure.

What is the query time for a range tree? Recall that it takes O(logn) time to locate the nodes representing
the canonical subsets for the 1-dimensional range query. For each, we invoke a 1-dimensional range search.
Thus there are O(log n) canonical sets, each invoking an O(log n) range search, for a total time of O(log? n).
As before, listing the elements of these sets can be performed in additional & time by just traversing the trees.
Counting queries can be answered by precomputing the subtree sizes, and then just adding them up.

Space: The space used by the data structure is O(nlogn) in the plane (and O(nlog!®" n) in dimension d). The
reason comes by summing the sizes of the two data structures. The tree for the z-coordinates requires only
O(n) storage. But we claim that the total storage in all the auxiliary trees is O(nlogn). We want to count

Lecture Notes 102 CMSC 754

X—range tree

y-range tree 5
Q.hi.y
' t.aux .®
Q.lo.x! - Qloy

Figure 83: Orthogonal range tree search.

the total sizes of all these trees. The number of nodes in a tree is proportional to the number of leaves, and
hence the number of points stored in this tree. Rather than count the number of points in each tree separately,
instead let us count the number of trees in which each point appears. This will give the same total. Observe
that a point appears in the auxiliary trees of each of its ancestors. Since the tree is balanced, each point has
O(logn) ancestors, and hence each point appears in O(logn) auxiliary trees. It follows that the total size of
all the auxiliary trees is O(nlog n). By the way, observe that because the auxiliary trees are just 1-dimensional
trees, we could just store them as a sorted array.

We claim that it is possible to construct a 2-dimensional range tree in O(nlogn) time. Constructing the 1-
dimensional range tree for the z-coordinates is easy to do in O(n log n) time. However, we need to be careful in
constructing the auxiliary trees, because if we were to sort each list of y-coordinates separately, the running time
would be O(n log2 n). Instead, the trick is to construct the auxiliary trees in a bottom-up manner. The leaves,
which contain a single point are trivially sorted. Then we simply merge the two sorted lists for each child to
form the sorted list for the parent. Since sorted lists can be merged in linear time, the set of all auxiliary trees
can be constructed in time that is linear in their total since, or O(n logn). Once the lists have been sorted, then
building a tree from the sorted list can be done in linear time.

Multilevel Search and Decomposable Queries: Summarizing, here is the basic idea to this (and many other query
problems based on leveled searches). Let (S, R) denote the range space, consisting of points .S and range sets
R. Suppose that each range of R can be expressed as an intersection of simpler ranges R = R1NRaN...N R,
and assume that we know how to build data structures for each of these simpler ranges.

The multilevel search structure is built by first building a range search tree for query R;. In this tree, the answer
to any query can be represented as the disjoint union of some collection {S1, Sa, . .., Sy } of canonical subsets,
each a subset of .S. Each canonical set corresponds to a node of the range tree for R;.

For each node ¢ of this range tree, we build an auxiliary range tree for the associated canonical subset S; for
ranges of class Ry. This forms the second level. We can continue in this manner, with each node of the range
tree for the ranges R; being associated with an auxiliary range tree for ranges ;.

To answer a range query, we solve the first range query, resulting in a collection of canonical subsets whose
disjoint union is the answer to this query. We then invoke the second range query problem on each of these
canonical subsets, and so on. Finally we take the union of all the answers to all these queries.

Lecture Notes 103 CMSC 754

Fractional Cascading: Can we improve on the O(log2 n) query time? We would like to reduce the query time
to O(logn). As we descend the search the z-interval tree, for each node we visit, we need to search the
corresponding y-interval tree. It is this combination that leads to the squaring of the logarithms. If we could
search each y-interval in O(1) time, then we could eliminate this second log factor. The trick to doing this
is used in a number of places in computational geometry, and is generally a nice idea to remember. We are
repeatedly searching different lists, but always with the same key. The idea is to merge all the different lists into
a single massive list, do one search in this list in O(log n) time, and then use the information about the location
of the key to answer all the remaining queries in O(1) time each. This is a simplification of a more general
search technique called fractional cascading.

In our case, the massive list on which we will do one search is the entire of points, sorted by y-coordinate.
In particular, rather than store these points in a balanced binary tree, let us assume that they are just stored as
sorted arrays. (The idea works for either trees or arrays, but the arrays are a little easier to visualize.) Call these
the auxiliary lists. We will do one (expensive) search on the auxiliary list for the root, which takes O(logn)
time. However, after this, we claim that we can keep track of the position of the y-range in each auxiliary list in
constant time as we descend the tree of x-coordinates.

Here is how we do this. Let v be an arbitrary internal node in the range tree of x-coordinates, and let vz, and vy
be its left and right children. Let A, be the sorted auxiliary list for v and let Ay, and Ag be the sorted auxiliary
lists for its respective children. Observe that A, is the disjoint union of A; and Ag (assuming no duplicate
y-coordinates). For each element in A,, we store two pointers, one to the item of equal or larger value in A,
and the other to the item of equal or larger value in Ap. (If there is no larger item, the pointer is null.) Observe
that once we know the position of an item in A,, then we can determine its position in either Ay, or Ap in O(1)
additional time.

Here is a quick illustration of the general idea. Let v denote a node of the x-tree, and let vy, and vy denote
its left and right children. Suppose that (in bottom to top order) the associated nodes within this range are:
(p1, p2, 3, D4, D5, Ps)» and suppose that in vy, we store the points (p2, ps,ps) and in vg we store (p1, P4, Pg)-
(This is shown in the figure below.) For each point in the auxiliary list for v, we store a pointer to the lists vy,
and vp, to the position this element would be inserted in the other list (assuming sorted by y-values). That is,
we store a pointer to the largest element whose y-value is less than or equal to this point.

Figure 84: Cascaded search in range trees.

At the root of the tree, we need to perform a binary search against all the y-values to determine which points lie

within this interval, for all subsequent levels, once we know where the y-interval falls with respect to the order

points here, we can drop down to the next level in O(1) time. Thus (as with fractional cascading) the running

time is O(2logn), rather than O(log?n). It turns out that this trick can only be applied to the last level of the

search structure, because all other levels need the full tree search to compute canonical sets.

Theorem: Given a set of n points in R?, orthogonal rectangular range queries can be answered in O(log(df Dot
k) time, from a data structure of size O(n log“~") n) which can be constructed in O(nlog'*~Y n) time.

Lecture Notes 104 CMSC 754

