B CS 5633 -- Spring 2009

ALGORITHMS

e

Matrix-chain multiplication

g . L3 L3 L3 L3
<" Matrix-chain multiplication

.............

Given: A sequence/chain of 7 matrices
AL A,,..., A, where A, is a p, xp;, matrix

Task: Compute their product A A, ...-A
using the minimum number of scalar

multiplications.

3/5/09 CS 5633 Analysis of Algorithms

Carola Wenk
3/5/09 CS 5633 Analysis of Algorithms 1
= Matrix-chain multiplication

ey
= example

Example: n=3, p,=3, p,=20, p,=5, p;=8. A, is a
3x20 matrix, A, 1s a 20x5 matrix, A, is a 5x2
matrix. Compute A, -A, -A; .

Pe=3 {’ A
p=20 ps=8

—

p=5

3/5/09 CS 5633 Analysis of Algorithms

'!——‘ Matrix-chain multiplication
= example (continued)

3 A
p=20 ps=8

p=5
» Computing A A, takes 3-20-5 multiplications and
results in a 3x5 matrix.
» Computing A ‘A, takes p. ,'p;p;., multiplications
and results in a p, ,xp,,, matrix.

3/5/09 CS 5633 Analysis of Algorithms

_ Matrix-chain multiplication

~3% example (continued)
A, 20
1)0:3{’ A, : M }5
p,=20 ps=8
s

» Computing (A -A,) ‘A, takes 3:20-5+3-5-8 =
300+120 = 420 multiplications

* Computing A (A, -A;) takes 20-5-8+3-20-8 =
800+480 = 1280 multiplications

3/5/09 CS 5633 Analysis of Algorithms

~«* Matrix-chain multiplication

Given: A sequence/chain of 7 matrices
AL A,,..., A, where A, is a p, xp;, matrix
Task: Compute their product A A, ...-A

using the minimum number of scalar
multiplications.

= Find a parenthesization that minimizes
the number of multiplications

3/5/09 CS 5633 Analysis of Algorithms 6

:,-.w“ Would greedy work?

1. Parenthesizing like this (. ((A"A,) Ay)..."A))
does not work (e.g., reverse our running
example).

2. Recursively parenthesize like this:
(Al R .A/()'(A/ﬁl ce 'An)
Po %P« Pk XPn
Find the /& that minimizes p,p,p, -

Does not work either (example: p =1, p,=2,
=3, p=4)

= Try dynamic programming

3/5/09 CS 5633 Analysis of Algorithms

“w* 1) Optimal substructure

Let A=Ay A fori<j

. Con51der an optlmal parenthesization for A, ;

Assume it sphts it at &, so
i _(A Ay (Akﬂ A,)

* Then, the par. of the prefix A;-...-A, within the

optlmal par. of A, must be an optlmal par. of
(Assume it 1s not optimal, then there

ex1sts a better par. for A, . Cut and paste this
par. into the par. for A, . This yields a better
par. for A, ; Contradlctlon)

3/5/09 CS 5633 Analysis of Algorithms 8

.............

“.w* 2) Recursive solution

a) First compute the minimum number of
multiplications

b) Then compute the actual parenthesization

We will concentrate on solving a) now.

3/5/09 CS 5633 Analysis of Algorithms

.............

“.<* 2) Recursive solution (cont.)

m|i,j] = minimum number of scalar
multiplications to compute A,

Goal: Compute m[1,7]

A=Ay A (Agy - A

Pi-1 XPx P ¥P;

Recurrence:
em[i,i]=0 fori=1,2,...,n

e mlij]= 12/(1}/1 (m[i,k]+m[k+1]+ p;y pepy)

3/5/09 CS 5633 Analysis of Algorithms 10

uuuuuuuuuuuuu

w— .
~.~* Recursion tree

1,4

7

L124 1234 13 44

FANNNGS

223423 44 1,122

* The runtime of the straight-forward
recursive algorithm is (2(2")

* But only ®(n?) different subproblems !

3/5/09 CS 5633 Analysis of Algorithms

uuuuuuuuuuuuu

o —

“ ° °
" <" Dynamic programming

MATRIX_CHAIN DP(p, n):
for i:=1 to n do m[7,i/]=0
for /:=2 to n do // | is length of chain
for i:=1 to n-/+1 do
Ji=itl-1
m[i,j]=0
for k=i to j-1 do
q:=m[i,k}+m[k+1,j14p. *p,*p;
if g<m[i,j] then
mlijl=q
s[i,j]:=k //index that optimizes m[i,j]
return 7 and s;

3/5/09 CS 5633 Analysis of Algorithms 12

o . . = Construction of an optimal
<" Dynamic programming P .
=~ parenthesization

* Use dynamic programming to fill the 2-

dimensional [i,j]-table PRINT_PARENS(s,7,7) // initial call: print_parens(s,1,n)

if i=] then print “A”i
else print “(*
PRINT PARENS(s.7,5[7,/])

* Bottom-up: Diagonal by diagonal

* For the construction of the optimal

parenthesization, use an additional array s[i,/] gllzg\tl";:’ARENS -
that records that value of & for which the print <) (s,siT+14)

minimum is attained and stored in m[i,/]
* O(n?) runtime (nxn table, O(7) min- Runtime: Recursion tree = binary tree with »

computation per entry), O(”) space leaves. Spend O(1) per node. O(#) total runtime.
* m[1,n] is the desired value

3/5/09 CS 5633 Analysis of Algorithms 13 3/5/09 CS 5633 Analysis of Algorithms 14

