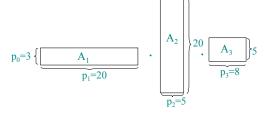

Matrix-chain multiplication

Given: A sequence/chain of n matrices $A_1, A_2, ..., A_n$, where A_i is a $p_{i-1} \times p_i$ matrix

Task: Compute their product $A_1 \cdot A_2 \cdot ... \cdot A_n$ using the minimum number of scalar multiplications.

3/5/09 CS 5633 Analysis of Algorithms



- Computing $A_1 \cdot A_2$ takes $3 \cdot 20 \cdot 5$ multiplications and results in a 3×5 matrix.
- Computing $A_i \cdot A_{i+1}$ takes $p_{i-1} \cdot p_i \cdot p_{i+1}$ multiplications and results in a $p_{i-1} \times p_{i+1}$ matrix.

3/5/09 CS 5633 Analysis of Algorithms

Matrix-chain multiplication example (continued)

- Computing $(A_1 \cdot A_2) \cdot A_3$ takes $3 \cdot 20 \cdot 5 + 3 \cdot 5 \cdot 8 = 300 + 120 = 420$ multiplications
- Computing $A_1 \cdot (A_2 \cdot A_3)$ takes $20 \cdot 5 \cdot 8 + 3 \cdot 20 \cdot 8 = 800 + 480 = 1280$ multiplications

3/5/09

CS 5633 Analysis of Algorithms

ALGORITHMS

Matrix-chain multiplication

Given: A sequence/chain of *n* matrices

 $A_1, A_2, ..., A_n$, where A_i is a $p_{i-1} \times p_i$ matrix

Task: Compute their product $A_1 \cdot A_2 \cdot ... \cdot A_n$ using the minimum number of scalar multiplications.

⇒ Find a parenthesization that minimizes the number of multiplications

3/5/09

CS 5633 Analysis of Algorithms

Would greedy work?

- 1. Parenthesizing like this (...((A₁·A₂)·A₃)...·A_n) does not work (e.g., reverse our running example).
- 2. Recursively parenthesize like this:

$$\underbrace{(\mathbf{A}_1 \cdot \ldots \cdot \mathbf{A}_k)}_{\mathbf{p}_0 \times \mathbf{p}_k} \cdot \underbrace{(\mathbf{A}_{k+1} \cdot \ldots \cdot \mathbf{A}_n)}_{\mathbf{p}_k \times \mathbf{p}_n}$$

Find the *k* that minimizes $p_0 \cdot p_k \cdot p_n$.

Does not work either (example: $p_0=1$, $p_1=2$, $p_2=3$, $p_3=4$)

⇒ Try dynamic programming

3/5/09

CS 5633 Analysis of Algorithms

1) Optimal substructure

Let $A_{i,j} = A_i \cdot ... \cdot A_j$ for $i \le j$

• Consider an optimal parenthesization for $A_{i,j}$. Assume it splits it at k, so

$$\mathbf{A}_{i,j} = (\hat{\mathbf{A}}_{i} \cdot \ldots \cdot \mathbf{A}_{k}) \cdot (\hat{\mathbf{A}}_{k+1} \cdot \ldots \cdot \mathbf{A}_{j})$$

• Then, the par. of the prefix $A_i \cdot ... \cdot A_k$ within the optimal par. of $A_{i,j}$ must be an optimal par. of $A_{i,k}$. (Assume it is not optimal, then there exists a better par. for $A_{i,k}$. **Cut and paste** this par. into the par. for $A_{i,j}$. This yields a better par. for $A_{i,j}$. Contradiction.)

3/5/09

7

CS 5633 Analysis of Algorithms

8

2) Recursive solution

- a) First compute the minimum number of multiplications
- b) Then compute the actual parenthesization

We will concentrate on solving a) now.

3/5/09

CS 5633 Analysis of Algorithms

9

11

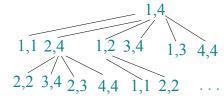
2) Recursive solution (cont.)

 $m[i,j] = minimum number of scalar multiplications to compute <math>A_{ij}$

Goal: Compute m[1,n]

$$\mathbf{A}_{i,j} = \underbrace{(\mathbf{A}_{i} \cdot \dots \cdot \mathbf{A}_{k})}_{\mathbf{p}_{i,1} \times \mathbf{p}_{k}} \cdot \underbrace{(\mathbf{A}_{k+1} \cdot \dots \cdot \mathbf{A}_{j})}_{\mathbf{p}_{k} \times \mathbf{p}_{i}}$$

Recurrence:


- m[i,i] = 0 for i=1,2,...,n
- $m[i,j] = \min_{i \le k < j} (m[i,k] + m[k+1,j] + p_{i-1}p_kp_j)$

CS 5633 Analysis of Algorithms

10

Recursion tree

- The runtime of the straight-forward recursive algorithm is $\Omega(2^n)$
- But only $\Theta(n^2)$ different subproblems!

3/5/09

CS 5633 Analysis of Algorithms

ALGORITHMS

3/5/09

Dynamic programming

```
MATRIX_CHAIN_DP(p, n):

for i:=1 to n do m[i,i]=0

for i:=2 to n do //l is length of chain

for i:=1 to n-l+1 do

j:=i+l-1

m[i,j]=\infty

for k:=i to j-1 do

q:=m[i,k]+m[k+1,j]+p_{i-1}*p_k*p_j

if q< m[i,j] then

m[i,j]=q

s[i,j]:=k //index that optimizes m[i,j]

return m and s;
```

3/5/09

CS 5633 Analysis of Algorithms

12

Dynamic programming

- Use dynamic programming to fill the 2-dimensional m[i,j]-table
- Bottom-up: Diagonal by diagonal
- For the construction of the optimal parenthesization, use an additional array s[i,j] that records that value of k for which the minimum is attained and stored in m[i,j]
- $O(n^3)$ runtime ($n \times n$ table, O(n) mincomputation per entry), $O(n^2)$ space
- m[1,n] is the desired value

3/5/09

CS 5633 Analysis of Algorithms

Construction of an optimal parenthesization

```
PRINT_PARENS(s,i,j) // initial call: print_parens(s,1,n)

if i=j then print "A"i

else print "("

PRINT_PARENS(s,i,s[i,j])

print "."

PRINT_PARENS(s,s[i,j]+1,j)

print ")"
```

Runtime: Recursion tree = binary tree with n leaves. Spend O(1) per node. O(n) total runtime.

3/5/09

13

CS 5633 Analysis of Algorithms

14