.............

r— CS 5633 -- Spring 2009

ALGORITHMS

Graphs

Carola Wenk

Slides courtesy of Charles Leiserson with
changes and additions by Carola Wenk

3/26/09 CS 5633 Analysis of Algorithms 1

.............

!\,] Graphs (review)

Definition. A directed graph (digraph)

G = (V, E) is an ordered pair consisting of

* a set // of vertices (singular: vertex),

caset £ V' x JV of edges.

In an undirected graph G = (V, E), the edge

set £ consists of unordered pairs of vertices.

In either case, we have |E| = O(|V]?).
Moreover, if G is connected, then |E|> | V] — 1.

(Review CLRS, Appendix B.4 and B.5.)

3/26/09 CS 5633 Analysis of Algorithms 2

.............

a0 \1

representation
The adjacency matrix of a graph G = (V, E), where
V=1{1,2,...,n},isthe matrix A[1 .. n, 1 ..n]

given by
1) e,
ALi, /] { 0 if (i,) & E.

A1 2 3 4
Q @ 110 1 10 O(|V]?) storage
’ 210 01 0 = dense
9 9 310 0 0 0 representation.
410010

3/26/09 CS 5633 Analysis of Algorithms 3

.............

!,\, J Adjacency-list representation

An adjacency list of a vertex v € V' is the list Adj[v]
of vertices adjacent to v.

Q)—1) Adn=023
’ Adj[2] = {3}
Adj131= {}
9 e Adj[4] = {3}

For undirected graphs, |Adj[v]| = degree(v).
For digraphs, | Adj[v] | = out-degree(v).

3/26/09 CS 5633 Analysis of Algorithms 4

:.:I“N‘ . . .
“.«" Adjacency-list representation

Handshaking Lemma:
Every edge is counted twice
* For undirected graphs:
2. cpdegree(v) =2|E|
* For digraphs:
2oy in-degree(v) + 2. _, out-degree(v) =2 | E |

= adjacency lists use O(|V/| + |E]) storage

= a sparse representation

= We usually use this representation,
unless stated otherwise

3/26/09 CS 5633 Analysis of Algorithms 5

“<* Graph Traversal

)
w

Let G=(V,E) be a (directed or undirected)
graph, given in adjacency list representation.

(VI=n,|E[=m
A graph traversal visits every vertex:

* Breadth-first search (BFS)
* Depth-first search ~ (DFS)

3/26/09 CS 5633 Analysis of Algorithms

:..u Breadth-First Search (BFS)

w

BFS(G=(V.E))
Mark all vertices in G as “unvisited” // time=0
Initialize empty queue O
for each vertex v € V' do
if v is unvisited

visit v // time++
0.enqueue(v)
BFS iter(G)

BFS iter(G)
while O is non-empty do
v = 0.dequeue()
for each w adjacent to v do
if w is unvisited

visit w // time-+
Add edge (v,w)to T
Q.enqueue(w)

3/26/09 CS 5633 Analysis of Algorithms 7

== Example of breadth-first
~ search

3/26/09 CS 5633 Analysis of Algorithms

..........................

v Example of breadth-first = Example of breadth-first
search

|\ |\
st ~ st ~3

Y
search

.............

@71 Example of breadth-first
' search

s =Y

.............

@77 Example of breadth-first
= search

.............

@71 Example of breadth-first
w1 search

3/26/09 CS 5633 Analysis of Algorithms

.............

@77 Example of breadth-first
= search

3/26/09 CS 5633 Analysis of Algorithms 18

uuuuuuuuuuuuu

@7 Example of breadth-first
» search

3/26/09 CS 5633 Analysis of Algorithms

uuuuuuuuuuuuu

;‘i:, X Breadth-First Search (BFS)

BFS(G=(V,E))
Mark all vertices in G as “unvisited” // time=0
O(n) R
o(1) Initialize empty queue O
for each vertex v € V' do
if v is unvisited

O(n) visit v // time++ BFS iter(())
without —
BFS_iter O.enqueue(v) | while O is non-empty do

| BFS _iter(G) (| v = O.dequeuc()

for each w adjacent to v do
if w is unvisited

O(m) O(deg(v) visit w // time+4
Add edge (v,w)to T’
Q.enqueue(w)
3/26/09 CS 5633 Analysis of Algorithms 20

.............

“ +* BFS runtime

Eah

* Each vertex is marked as unvisited in the beginning = O(#n) time
* Each vertex is marked at most once, enqueued at most once,

and therefore dequeued at most once

* The time to process a vertex is proportional to the size of its
adjacency list (its degree), since the graph is given in adjacency list
representation

= O(m) time

* Total runtime is O(n+m) = O(|V| + |E|)

3/26/09 CS 5633 Analysis of Algorithms 21

.............

“.«* Depth-First Search (DFS)

DFS(G=(V,E))
Mark all vertices in G as “unvisited” // time=0
for each vertex v € J do
if v is unvisited
DFS rec(G,v)

DFS rec(G, v)
visit v // d[v]=t++time
for each w adjacent to v do
if w is unvisited
Add edge (v,w) to tree T’
DFS rec(G,w)
/I flv]=++time

3/26/09 CS 5633 Analysis of Algorithms 22

ALGORI THMS

“«* Example of depth-first search

d/f

Store edges in
n:abcdefghi predecessorarray
-a

3/26/09 CS 5633 Analysis of Algorithms 23

ALGORI THMS

“«* Example of depth-first search

d/f

1/-
Store edges in
n:abcdefghi predecessorarray
-ab
3/26/09 CS 5633 Analysis of Algorithms 24

.............

d/f
0/-
1/-
2/3
Store edges in
n:abcdefghi predecessorarray
-ab
3/26/09 CS 5633 Analysis of Algorithms 25

.............

1/-
2/3
Store edges in
n:abcdefghi predecessorarray
-ab b
3/26/09 CS 5633 Analysis of Algorithms 26

uuuuuuuuuuuuu

23 e
Store edges in

n:abcdefghi predecessorarray
-ab b e

3/26/09 CS 5633 Analysis of Algorithms 27

uuuuuuuuuuuuu

Store edges in

n:abcdefghi predecessorarray
-ab b e g
3/26/09 CS 5633 Analysis of Algorithms 28

.............

d/f

0/-

1/-

6/-
2/3
Store edges in
n:abcdefghi predecessorarray
-ab b e1g
3/26/09 CS 5633 Analysis of Algorithms 29

.............

1/-
6/-
2/3
Store edges in
n:abcdefghi predecessorarray
-ab b e1g
3/26/09 CS 5633 Analysis of Algorithms 30

uuuuuuuuuuuuu

Store edges in
cdefghi predecessorarray
b b ei1g

3/26/09 CS 5633 Analysis of Algorithms 31

uuuuuuuuuuuuu

d/f
0/- 7/8
1/-

6/9

Store edges in

n:abcdefghi predecessorarray
-ab bgeilg
3/26/09 CS 5633 Analysis of Algorithms 32

.............

d/f 10/-

0/- 7/8

1/-

6/9
2/3
Store edges in
n:abcdefghi predecessorarray
-abfbgeig
3/26/09 CS 5633 Analysis of Algorithms 33

.............

1/-
6/9
2/3
Store edges in
n:abcdefghi predecessorarray
-abfbgeig
3/26/09 CS 5633 Analysis of Algorithms 34

uuuuuuuuuuuuu

Store edges in
g h i predecessor array

3/26/09 CS 5633 Analysis of Algorithms 35

uuuuuuuuuuuuu

d/f 10/13
0/- 7/8
1/-

6/9

Store edges in

n:abcdefghi predecessorarray
-abfbgeilg
3/26/09 CS 5633 Analysis of Algorithms 36

.............

Store edges in

n:abcdefghi predecessorarray
-abfbgeig
3/26/09 CS 5633 Analysis of Algorithms 37

.............

Store edges in
g h i predecessor array

3/26/09 CS 5633 Analysis of Algorithms 38

uuuuuuuuuuuuu

d/f 10/13
qm 7/8
1/16

6/9

Store edges in
g h i predecessor array
e 1

CS 5633 Analysis of Algorithms 39

3/26/09

uuuuuuuuuuuuu

;‘i:, . Depth-First Search (DFS)

DFS(G=(V.E))
O(n) Mark all vertices in G as “unvisited” // time=0
o for each vertex v € /' do
'(n) if v is unvisited
without
DFS_rec DFS rec(G,v)
DFS rec(G, v)
o(1) visit v // d[v]=++time
for each w adjacent to v do
if w is unvisited
Q(deg(v)) Add edge (v,w) to tree T’
without DFS_rec(G,w)
recursive call .
// flv]=t+time

= With Handshaking Lemma, all recursive calls are O(m), for

a total of O(n + m) runtime

3/26/09 CS 5633 Analysis of Algorithms 40

Q DFS runtime

* Each vertex is visited at most once = O(7) time

* The body of the for loops (except the recursive call) take constant
time per graph edge

* All for loops take O(m1) time

* Total runtime is O(n+m) = O(|V| + |E|)

3/26/09 CS 5633 Analysis of Algorithms 41

a depth-first tree. It holds d(u)<d(v).
d(u)>d(v) and flu)>f(v).

* tree edge, if it is part of the depth-first forest.

, if u connects to an ancestor v in a depth-
ﬁrst tree. It holds d(u)>d(v) and flu)<f(v).
» forward edge, if it connects u to a descendant v in

* cross edge, if it is any other edge. It holds

3/26/09 CS 5633 Analysis of Algorithms

42

RITHMS

"<~ Paths, Cycles, Connectivity

Let G=(V.,E) be a directed (or undirected) graph

» A path from v, to v, in G is a sequence of vertices v, v,,...,v, such that
(Vv el (or {v,vy,,} €£if G is undirected) for all ie {1,....k-1}.

* A path is simple if all vertices in the path are distinct.

* Apath v, v,,...,v forms a cycle if v,=v, and k=3.

A graph with no cycles is acyclic.

* An undirected acyclic graph is called a tree. (Trees do not have to
have a root vertex specified.)

* A directed acyclic graph is a DAG. (A DAG can have undirected
cycles if the direction of the edges is not considered.)

» An undirected graph is connected if every pair of vertices is connected
by a path. A directed graph is strongly connected if for every pair
u,ve V there is a path from u to v and there is a path from v to u.

* The (strongly) connected components of a graph are the equivalence

classes of vertices under this reachability relation.
3/26/09 CS 5633 Analysis of Algorithms 43

:,u DAG Theorem

Theorem: A directed graph G is acyclic
< a depth-first search of G yields no back edges.
Proof:
=" Suppose there is a back edge (u,v). Then by
definition of a back edge there would be a cycle.
<": Suppose G contains a cycle c. Let v be the first
vertex to be discovered in ¢, and let u be the
preceding vertex in c. v is an ancestor of u in the
depth-first forest, hence (u,v) is a back edge.

3/26/09 CS 5633 Analysis of Algorithms

44

;\jﬁ, . Topological Sort

Topologically sort the vertices of a directed acyclic
graph (DAG):
* Determine /: V' — {1, 2, ...,

= f() <f).

O/\

V|} such that (i, v) € E

3/26/09 CS 5633 Analysis of Algorithms

;\jﬁ, " Topological Sort Algorithm

* Store vertices with in-degree 0 in a queue Q.

* While Q is not empty
* Dequeue vertex v, and give it the next number
* Decrease in-degree of all adjacent vertices by 1
* Enqueue all vertices with in-degree 0

,g3

Q:a,b,c,e,d,f,g1,h

3/26/09 CS 5633 Analysis of Algorithms 46

uuuuuuuuuuuuu

e . Topological Sort Runtime

Runtime:

* O(|V|+|E|) because every edge is touched once, and
every vertex is enqueued and dequeued exactly
once

3/26/09 CS 5633 Analysis of Algorithms 47

.-::, . Depth-First Search Revisited

DFS(G=(V,E))
Mark all vertices in G as “unvisited” // time=0
for each vertex v € /' do
if v is unvisited
DFS rec(G,v)

DFS rec(G, v)
visit v // d[v]=++time
for each w adjacent to v do
if w is unvisited
Add edge (v,w) to tree T’
DFS rec(G,w)
[flv]=t+time

3/26/09 CS 5633 Analysis of Algorithms 48

.............

=7 DFS-Based Topological Sort
= Algorithm

« Call DFS on the directed acyclic graph G=(V,E)
= Finish time for every vertex
* Reverse the finish times (highest finish time
becomes the lowest finish time,...)
= Valid function /: V' — {1, 2, ..., | V'|} such that
(u,v) € E= [() <[(v)

Runtime: O(|V|+|E])

.............

;‘i:, Y DFS-Based Topological Sort

* Run DFS:

3/26/09 CS 5633 Analysis of Algorithms 50

3/26/09 CS 5633 Analysis of Algorithms 49
_) .

.-i =~ DFS edge classification

" %//11; 10/13

* tree edge, if it is part of the depth-first forest.
* back edge, if u connects to an ancestor v in a depth-
first tree. It holds d(u)>d(v) and flu)<f(v).

« forward edge, if it connects « to a descendant v in

a depth-first tree. It holds d(u)<d(v).

* cross edge, if it is any other edge. It holds

d(u)>d(v) and flu)>f(v).

3/26/09 CS 5633 Analysis of Algorithms 51

uuuuuuuuuuuuu

:"i:,‘ DFS-Based Top. Sort Correctness

* Need to show that for any (u, v) € £ holds f'(v) < f'(u).
(since we consider reversed finish times)

* Consider exploring edge (u, v) in DFS:
* v cannot be visited and unfinished (and hence an ancestor in
the depth first tree), since then (u,v) would be a back edge
(which by the DAG lemma cannot happen).
« If v has not been visited yet, it becomes a descendant of «, and
hence f(v)<f(u) . (tree edge)
« If v has been finished, f{v) has been set, and u is still being
explored, hence f(u)>f(v) (forward edge, cross edge) .

3/26/09 CS 5633 Analysis of Algorithms 52

;‘;",Q Topological Sort Runtime

Runtime:

* O(]V|+|E|) because every edge is touched once, and
every vertex is enqueued and dequeued exactly
once

* DFS-based algorithm: O(|V]+ |E|)

3/26/09 CS 5633 Analysis of Algorithms 53

