
1

CS 5633 Analysis of Algorithms 13/26/09

CS 5633 -- Spring 2009

Graphs
Carola Wenk

Slides courtesy of Charles Leiserson with
changes and additions by Carola Wenk

CS 5633 Analysis of Algorithms 23/26/09

Graphs (review)
Definition. A directed graph (digraph)
G = (V, E) is an ordered pair consisting of
• a set V of vertices (singular: vertex),
• a set E ⊆ V × V of edges.
In an undirected graph G = (V, E), the edge
set E consists of unordered pairs of vertices.
In either case, we have |E | = O(|V| 2).
Moreover, if G is connected, then |E | ≥ |V | – 1.

(Review CLRS, Appendix B.4 and B.5.)

CS 5633 Analysis of Algorithms 33/26/09

Adjacency-matrix
representation

The adjacency matrix of a graph G = (V, E), where
V = {1, 2, …, n}, is the matrix A[1 . . n, 1 . . n]
given by

A[i, j] = 1 if (i, j) ∈ E,
0 if (i, j) ∉ E.

22 11

33 44

A 1 2 3 4
1
2
3
4

0 1 1 0
0 0 1 0
0 0 0 0
0 0 1 0

Θ(|V| 2) storage
⇒ dense
representation.

CS 5633 Analysis of Algorithms 43/26/09

Adjacency-list representation
An adjacency list of a vertex v ∈ V is the list Adj[v]
of vertices adjacent to v.

22 11

33 44

Adj[1] = {2, 3}
Adj[2] = {3}
Adj[3] = {}
Adj[4] = {3}

For undirected graphs, |Adj[v] | = degree(v).
For digraphs, | Adj[v] | = out-degree(v).

2

CS 5633 Analysis of Algorithms 53/26/09

Adjacency-list representation

Handshaking Lemma:
Every edge is counted twice
• For undirected graphs:

∑v∈V degree(v) = 2 |E |
• For digraphs:

∑v∈V in-degree(v) + ∑v∈V out-degree(v) = 2 | E |

⇒ adjacency lists use Θ(|V| + |E|) storage
⇒ a sparse representation
⇒ We usually use this representation,

unless stated otherwise
CS 5633 Analysis of Algorithms 63/26/09

Graph Traversal

Let G=(V,E) be a (directed or undirected)
graph, given in adjacency list representation.

|V| = n , |E| = m

A graph traversal visits every vertex:
• Breadth-first search (BFS)
• Depth-first search (DFS)

CS 5633 Analysis of Algorithms 73/26/09

Breadth-First Search (BFS)
BFS(G=(V,E))

Mark all vertices in G as “unvisited” // time=0
Initialize empty queue Q
for each vertex v ∈ V do

if v is unvisited
visit v // time++
Q.enqueue(v)
BFS_iter(G)

BFS_iter(G)
while Q is non-empty do

v = Q.dequeue()
for each w adjacent to v do

if w is unvisited
visit w // time++
Add edge (v,w) to T
Q.enqueue(w)

CS 5633 Analysis of Algorithms 83/26/09

Example of breadth-first
search

aa

bb

cc

dd

ee
gg

ii

ff hh

Q:

3

CS 5633 Analysis of Algorithms 93/26/09

Example of breadth-first
search

aa

bb

cc

dd

ee
gg

ii

ff hh

Q: a

0

0

CS 5633 Analysis of Algorithms 103/26/09

Example of breadth-first
search

aa

bb

cc

dd

ee
gg

ii

ff hh

Q: a b d

0

1

2

1 2

CS 5633 Analysis of Algorithms 113/26/09

Example of breadth-first
search

aa

bb

cc

dd

ee
gg

ii

ff hh

Q: a b d c e

0

1

2

3 4

2 3 4

CS 5633 Analysis of Algorithms 123/26/09

Example of breadth-first
search

aa

bb

cc

dd

ee
gg

ii

ff hh

Q: a b d c e

0

1

2

3 4

3 4

4

CS 5633 Analysis of Algorithms 133/26/09

Example of breadth-first
search

aa

bb

cc

dd

ee
gg

ii

ff hh

Q: a b d c e

0

1

2

3 4

4

CS 5633 Analysis of Algorithms 143/26/09

Example of breadth-first
search

aa

bb

cc

dd

ee
gg

ii

ff hh

Q: a b d c e g i

0

1

2

3 4

5

6

5 6

CS 5633 Analysis of Algorithms 153/26/09

Example of breadth-first
search

aa

bb

cc

dd

ee
gg

ii

ff hh

Q: a b d c e g i f

0

1

2

3 4

5

6

7

6 7

CS 5633 Analysis of Algorithms 163/26/09

Example of breadth-first
search

aa

bb

cc

dd

ee
gg

ii

ff hh

Q: a b d c e g i f h

0

1

2

3 4

5

6

7 8

7 8

a

a

5

CS 5633 Analysis of Algorithms 173/26/09

Example of breadth-first
search

aa

bb

cc

dd

ee
gg

ii

ff hh

Q: a b d c e g i f h

0

1

2

3 4

5

6

7 8

8

a

a

CS 5633 Analysis of Algorithms 183/26/09

Example of breadth-first
search

aa

bb

cc

dd

ee
gg

ii

ff hh

Q: a b d c e g i f h

0

1

2

3 4

5

6

7 8

a

a

CS 5633 Analysis of Algorithms 193/26/09

Example of breadth-first
search

aa

bb

cc

dd

ee
gg

ii

ff hh

Q: a b d c e g i f h

0

1

2

3 4

5

6

7 8

a

a

CS 5633 Analysis of Algorithms 203/26/09

Breadth-First Search (BFS)
BFS(G=(V,E))

Mark all vertices in G as “unvisited” // time=0
Initialize empty queue Q
for each vertex v ∈ V do

if v is unvisited
visit v // time++
Q.enqueue(v)
BFS_iter(G)

BFS_iter(G)
while Q is non-empty do

v = Q.dequeue()
for each w adjacent to v do

if w is unvisited
visit w // time++
Add edge (v,w) to T
Q.enqueue(w)

O(n)
O(1)

O(n)
without
BFS_iter

O(deg(v))
O(m)

6

CS 5633 Analysis of Algorithms 213/26/09

BFS runtime

• Each vertex is marked as unvisited in the beginning ⇒ O(n) time
• Each vertex is marked at most once, enqueued at most once,
and therefore dequeued at most once
• The time to process a vertex is proportional to the size of its
adjacency list (its degree), since the graph is given in adjacency list
representation
⇒ O(m) time
• Total runtime is O(n+m) = O(|V| + |E|)

CS 5633 Analysis of Algorithms 223/26/09

Depth-First Search (DFS)

DFS_rec(G, v)
visit v // d[v]=++time
for each w adjacent to v do

if w is unvisited
Add edge (v,w) to tree T
DFS_rec(G,w)

// f[v]=++time

DFS(G=(V,E))
Mark all vertices in G as “unvisited” // time=0
for each vertex v ∈ V do

if v is unvisited
DFS_rec(G,v)

CS 5633 Analysis of Algorithms 233/26/09

Example of depth-first search

aa

bb

cc

dd

ee
gg

ii

ff hh0/-
d / f

aa

π: a b c d e f g h i
a-

Store edges in
predecessor array

CS 5633 Analysis of Algorithms 243/26/09

Example of depth-first search

aa

bb

cc

dd

ee
gg

ii

ff hh0/-
d / f

π: a b c d e f g h i
a

1/-

b-

Store edges in
predecessor array

7

CS 5633 Analysis of Algorithms 253/26/09

Example of depth-first search

aa

bb

cc

dd

ee
gg

ii

ff hh0/-
d / f

π: a b c d e f g h i
a

1/-

b

2/-2/3

-

Store edges in
predecessor array

CS 5633 Analysis of Algorithms 263/26/09

Example of depth-first search

aa

bb

cc

dd

ee
gg

ii

ff hh0/-
d / f

π: a b c d e f g h i
a

1/-

b

2/3

b-

Store edges in
predecessor array

CS 5633 Analysis of Algorithms 273/26/09

Example of depth-first search

aa

bb

cc

dd

ee
gg

ii

ff hh0/-
d / f

π: a b c d e f g h i
a

1/-

b

2/3
4/-

b e-

Store edges in
predecessor array

CS 5633 Analysis of Algorithms 283/26/09

Example of depth-first search

aa

bb

cc

dd

ee
gg

ii

ff hh0/-
d / f

π: a b c d e f g h i
a

1/-

b

2/3
4/-

b e

5/-

g-

Store edges in
predecessor array

8

CS 5633 Analysis of Algorithms 293/26/09

Example of depth-first search

aa

bb

cc

dd

ee
gg

ii

ff hh0/-
d / f

π: a b c d e f g h i
a

1/-

b

2/3
4/-

b e

5/-

g

6/-

i-

Store edges in
predecessor array

CS 5633 Analysis of Algorithms 303/26/09

Example of depth-first search

aa

bb

cc

dd

ee
gg

ii

ff hh0/-
d / f

π: a b c d e f g h i
a

1/-

b

2/3
4/-

b e

5/-

g

6/-

i

7/-7/8

-

Store edges in
predecessor array

CS 5633 Analysis of Algorithms 313/26/09

Example of depth-first search

aa

bb

cc

dd

ee
gg

ii

ff hh0/-
d / f

π: a b c d e f g h i
a

1/-

b

2/3
4/-

b e

5/-

g

6/-

i

7/8

6/9

-

Store edges in
predecessor array

CS 5633 Analysis of Algorithms 323/26/09

Example of depth-first search

aa

bb

cc

dd

ee
gg

ii

ff hh0/-
d / f

π: a b c d e f g h i
a

1/-

b

2/3
4/-

b e

5/-

gi

7/8

6/9

g-

Store edges in
predecessor array

9

CS 5633 Analysis of Algorithms 333/26/09

Example of depth-first search

aa

bb

cc

dd

ee
gg

ii

ff hh0/-
d / f

π: a b c d e f g h i
a

1/-

b

2/3
4/-

b e

5/-

gi

7/8

6/9

g

10/-

f-

Store edges in
predecessor array

CS 5633 Analysis of Algorithms 343/26/09

Example of depth-first search

aa

bb

cc

dd

ee
gg

ii

ff hh0/-
d / f

π: a b c d e f g h i
a

1/-

b

2/3
4/-

b e

5/-

gi

7/8

6/9

g

10/-

f

11/-11/12

-

Store edges in
predecessor array

CS 5633 Analysis of Algorithms 353/26/09

Example of depth-first search

aa

bb

cc

dd

ee
gg

ii

ff hh0/-
d / f

π: a b c d e f g h i
a

1/-

b

2/3
4/-

b e

5/-

gi

7/8

6/9

g

10/-

f

11/12
10/13

-

Store edges in
predecessor array

CS 5633 Analysis of Algorithms 363/26/09

Example of depth-first search

aa

bb

cc

dd

ee
gg

ii

ff hh0/-
d / f

π: a b c d e f g h i
a

1/-

b

2/3
4/-

b e

5/-

gi

7/8

6/9

gf

11/12
10/13

5/14

-

Store edges in
predecessor array

10

CS 5633 Analysis of Algorithms 373/26/09

Example of depth-first search

aa

bb

cc

dd

ee
gg

ii

ff hh0/-
d / f

π: a b c d e f g h i
a

1/-

b

2/3
4/-

b e gi

7/8

6/9

gf

11/12
10/13

5/14

4/15

-

Store edges in
predecessor array

CS 5633 Analysis of Algorithms 383/26/09

Example of depth-first search

aa

bb

cc

dd

ee
gg

ii

ff hh0/-
d / f

π: a b c d e f g h i
a

1/-

b

2/3

b e gi

7/8

6/9

gf

11/12
10/13

5/14

4/15

1/16

-

Store edges in
predecessor array

CS 5633 Analysis of Algorithms 393/26/09

Example of depth-first search

aa

bb

cc

dd

ee
gg

ii

ff hh0/-
d / f

π: a b c d e f g h i
a b

2/3

b e gi

7/8

6/9

gf

11/12
10/13

5/14

4/15

1/16

0/17

-

Store edges in
predecessor array

CS 5633 Analysis of Algorithms 403/26/09

Depth-First Search (DFS)

DFS_rec(G, v)
visit v // d[v]=++time
for each w adjacent to v do

if w is unvisited
Add edge (v,w) to tree T
DFS_rec(G,w)

// f[v]=++time

DFS(G=(V,E))
Mark all vertices in G as “unvisited” // time=0
for each vertex v ∈ V do

if v is unvisited
DFS_rec(G,v)

O(n)

O(n)
without
DFS_rec

O(deg(v))
without
recursive call

O(1)

⇒ With Handshaking Lemma, all recursive calls are O(m), for
a total of O(n + m) runtime

11

CS 5633 Analysis of Algorithms 413/26/09

DFS runtime

• Each vertex is visited at most once ⇒ O(n) time
• The body of the for loops (except the recursive call) take constant
time per graph edge
• All for loops take O(m) time
• Total runtime is O(n+m) = O(|V| + |E|)

CS 5633 Analysis of Algorithms 423/26/09

DFS edge classification
aa

bb

cc

dd

ee
gg

ii

ff hh
d / f

2/3

7/8

6/9

11/12
10/13

5/14

4/15

1/16

0/17

Edge u v is a:
• tree edge, if it is part of the depth-first forest.
• back edge, if u connects to an ancestor v in a depth-
first tree. It holds d(u)>d(v) and f(u)<f(v).
• forward edge, if it connects u to a descendant v in
a depth-first tree. It holds d(u)<d(v).
• cross edge, if it is any other edge. It holds
d(u)>d(v) and f(u)>f(v).

c

c

f

f
bb

b

CS 5633 Analysis of Algorithms 433/26/09

Paths, Cycles, Connectivity
Let G=(V,E) be a directed (or undirected) graph
• A path from v1 to vk in G is a sequence of vertices v1, v2,…,vk such that

(vi,v{i+1})∈E (or {vi,v{i+1}} ∈E if G is undirected) for all i∈{1,…,k-1}.
• A path is simple if all vertices in the path are distinct.
• A path v1, v2,…,vk forms a cycle if v1=vk and k≥3.
• A graph with no cycles is acyclic.

• An undirected acyclic graph is called a tree. (Trees do not have to
have a root vertex specified.)
• A directed acyclic graph is a DAG. (A DAG can have undirected
cycles if the direction of the edges is not considered.)

• An undirected graph is connected if every pair of vertices is connected
by a path. A directed graph is strongly connected if for every pair
u,v∈V there is a path from u to v and there is a path from v to u.

• The (strongly) connected components of a graph are the equivalence
classes of vertices under this reachability relation.

CS 5633 Analysis of Algorithms 443/26/09

DAG Theorem

Theorem: A directed graph G is acyclic
⇔ a depth-first search of G yields no back edges.
Proof:
“⇒”: Suppose there is a back edge (u,v). Then by

definition of a back edge there would be a cycle.
“⇐”: Suppose G contains a cycle c. Let v be the first

vertex to be discovered in c, and let u be the
preceding vertex in c. v is an ancestor of u in the
depth-first forest, hence (u,v) is a back edge.

u

v

12

CS 5633 Analysis of Algorithms 453/26/09

Topological Sort
Topologically sort the vertices of a directed acyclic
graph (DAG):
• Determine f : V → {1, 2, …, |V|} such that (u, v) ∈ E
⇒ f (u) < f (v).

33 55 66

44

22

77

99

8811

33 55 664422 77 998811

CS 5633 Analysis of Algorithms 463/26/09

Topological Sort Algorithm

33 55 77

44

22

66

88

9911
0 22

1

1

3
1 10

1

2

0

0

0

1

0

0

0

1

• Store vertices with in-degree 0 in a queue Q.
• While Q is not empty

• Dequeue vertex v, and give it the next number
• Decrease in-degree of all adjacent vertices by 1
• Enqueue all vertices with in-degree 0

Q:

a

b

e

dc
i

h

g

f

a , b , c , d , e , f , g , i

0

, h

CS 5633 Analysis of Algorithms 473/26/09

Topological Sort Runtime

Runtime:
• O(|V|+|E|) because every edge is touched once, and

every vertex is enqueued and dequeued exactly
once

CS 5633 Analysis of Algorithms 483/26/09

Depth-First Search Revisited

DFS_rec(G, v)
visit v // d[v]=++time
for each w adjacent to v do

if w is unvisited
Add edge (v,w) to tree T
DFS_rec(G,w)

// f[v]=++time

DFS(G=(V,E))
Mark all vertices in G as “unvisited” // time=0
for each vertex v ∈ V do

if v is unvisited
DFS_rec(G,v)

13

CS 5633 Analysis of Algorithms 493/26/09

DFS-Based Topological Sort
Algorithm

• Call DFS on the directed acyclic graph G=(V,E)
⇒ Finish time for every vertex

• Reverse the finish times (highest finish time
becomes the lowest finish time,…)
⇒ Valid function f ’: V → {1, 2, …, | V |} such that

(u, v) ∈ E ⇒ f ’(u) < f’ (v)

Runtime: O(|V|+|E|)

CS 5633 Analysis of Algorithms 503/26/09

DFS-Based Topological Sort
• Run DFS:

1 2 3 4 /5/6

7 8 /9/10

/11

13
14 15/16/17

/18

/12

• Reverse finish times:

98

6 7

5

32
1

4

CS 5633 Analysis of Algorithms 513/26/09

DFS edge classification
aa

bb

cc

dd

ee
gg

ii

ff hh
d / f

2/3

7/8

6/9

11/12
10/13

5/14

4/15

1/16

0/17

Edge u v is a:
• tree edge, if it is part of the depth-first forest.
• back edge, if u connects to an ancestor v in a depth-
first tree. It holds d(u)>d(v) and f(u)<f(v).
• forward edge, if it connects u to a descendant v in
a depth-first tree. It holds d(u)<d(v).
• cross edge, if it is any other edge. It holds
d(u)>d(v) and f(u)>f(v).

c

c

f

f
bb

b

CS 5633 Analysis of Algorithms 523/26/09

DFS-Based Top. Sort Correctness

• Need to show that for any (u, v) ∈ E holds f (v) < f (u).
(since we consider reversed finish times)

• Consider exploring edge (u, v) in DFS:
• v cannot be visited and unfinished (and hence an ancestor in
the depth first tree), since then (u,v) would be a back edge
(which by the DAG lemma cannot happen).
• If v has not been visited yet, it becomes a descendant of u, and
hence f(v)<f(u) . (tree edge)
• If v has been finished, f(v) has been set, and u is still being
explored, hence f(u)>f(v) (forward edge, cross edge) .

14

CS 5633 Analysis of Algorithms 533/26/09

Topological Sort Runtime

Runtime:
• O(|V|+|E|) because every edge is touched once, and

every vertex is enqueued and dequeued exactly
once

• DFS-based algorithm: O(|V| + |E|)

