uuuuuuuuuuuuu

r— CS 5633 -- Spring 2009

ALGORITHMS

Union-Find Data Structures
Carola Wenk

Slides courtesy of Charles Leiserson with small
changes by Carola Wenk

3/24/09 CS 5633 Analysis of Algorithms

.............

@7 Disjoint-set data structure
=" (Union-Find)
Problem:
* Maintain a dynamic collection of pairwise-disjoint
sets S= {5, 5,, ..., S }.
* Each set S, has one element distinguished as the
representative element, rep[S.].
* Must support 3 operations:
* MAKE-SET(x): adds new set {x} to S
with rep[{x}]=x (forany x ¢ S forall i)
* UNION(x, y): replaces sets S, S, with S, U S in S
(for any x, y in distinct sets S.S)) '
* FIND-SET(x): returns representative rep[S. |

of set S| containing element x
3/24/09 CS 5633 Analysis of Algorithms 2

uuuuuuuuuuuuu

;‘i:,- Union-Find Example

The representative
S = { } is underlined

MAKE-SET(2) S={2
MAKE-SET(3) S={{2}, {3}}
MAKE-SET(4) S={{2}, {3}, {4}}

FIND-SET(4) = 4

UNION(2, 4) S=1{{2,4}, {3}}

FIND-SET(4) = 2

MAKE-SET(5) S=1{{2,4}, {3}, {5}}

UNION(4, 5) S=1{{2,4,5},{3}}
w20 5 5693 At of Algriims

uuuuuuuuuuuuu

=77 Application:
~*'" Dynamic connectivity

Suppose a graph is given to us incrementally by
* ADD-VERTEX(V)
* ADD-EDGE(u, v)

and we want to support connectivity queries:
* CONNECTED(1, v):
Are u and v in the same connected component?

For example, we want to maintain a spanning forest,
so we check whether each new edge connects a
previously disconnected pair of vertices.

3/24/09 CS 5633 Analysis of Algorithms 4

e Application:
=" Dynamic connectivity

Sets of vertices represent connected components.
Suppose a graph is given to us incrementally by

* ADD-VERTEX(Vv) : MAKE-SET(V)

* ADD-EDGE(1, v) : if not CONNECTED(u, V)

then UNION(v, w)

and we want to support connectivity queries:

* CONNECTED(1, v): : FIND-SET(12) = FIND-SET(V)

Are 1 and v in the same connected component?

For example, we want to maintain a spanning forest,
so we check whether each new edge connects a
previously disconnected pair of vertices.

3/24/09 CS 5633 Analysis of Algorithms 5

a-—: Disjoint-set data structure
=" (Union-Find) IT

* In all operations pointers to the elements x, y
in the data structure are given.

» Hence, we do not need to first search for the
element in the data structure.

* Let n denote the overall number of elements
(equivalently, the number of MAKE-SET
operations).

3/24/09 CS 5633 Analysis of Algorithms

:".‘,",Q Simple linked-list solution

Store each set S, = {x,, x,, ..., x,.} as an (unordered)
doubly linked list. Define representative element
rep|S,] to be the front of the list, x,.

S0 I = N [o I Y
rep[Si]
O(1) = MAKE-SET(x) initializes x as a lone node.
* FIND-SET(x) walks left in the list containing
O(n) x until it reaches the front of the list.
O(n) * UNION(x, y) calls FIND-SET on y, finds the
last element of list x, and concatenates both
lists, leaving rep. as FIND-SET[x].

3/24/09 CS 5633 Analysis of Algorithms 7

S;t |

"~ Simple balanced-tree
maintain how?

Store each set S, = {x, x,, ..., x| as a_balanced free
(ignoring keys). Define representative element
rep[S;] to be the root of the tree.

S.={x|, Xy, X3, X4, X5}
* MAKE-SET(x) initializes x PRt e s

O(1) 45 a lone node.
Olos o FIND-SET(x) walks up the tree
(log) containing x until reaching root.

* UNION(x,) calls FIND-SET on
©U0 7)., " finds a leaf of x and
concatenates both trees,

changing rep. of y

3/24/09 CS 5633 Analysis of Algorithms HOW? 8

;‘;",% Plan of attack

* We will build a simple disjoint-union data structure
that, in an amortized sense, performs significantly
better than ®(log 7) per op., even better than
®(log log n), ®(log log log n), ..., but not quite O(1).

*To reach this goal, we will introduce two key #ricks.
Each trick converts a trivial ®(») solution into a
simple ®(log) amortized solution. Together, the
two tricks yield a much better solution.

* First trick arises in an augmented linked list.
Second trick arises in a tree structure.

3/24/09 CS 5633 Analysis of Algorithms 9

;‘;;..; Augmented linked-list solution

Store S. = {x,, x,, ..., x,.} as unordered doubly linked list.
Augmentation: Each element x; also stores pointer
rep[x] to rep[S;] (which is the front of the list, x)).

rep
I— |
S | |x1| —L:l— |x2| -'—
rep[Si]
* FIND-SET(x) returns rep|x]. -0(1)

» UNION(x, y) concatenates lists containing
x and y and updates the rep pointers for
all elements in the list containing y. - 0O(n)

3/24/09 CS 5633 Analysis of Algorithms 10

-a—-‘ Example of
»'" augmented linked-list solution

Each element x; stores pointer rep[x;] to rep[S,].
UNION(x, V)
* concatenates the lists containing x and y, and
« updates the rep pointers for all elements in the
list containing y.

re
ep
SX' | |'xl| H— |'x2| | rep
replS.] — |
S, Ll T Dol 31 o] |
repls,
3/24/09 CS 5633 Analysis of Algorithms 1

@7 Example of
» augmented linked-list solution
Each element x; stores pointer rep[x;] to rep[S].
UNION(x, y) ‘

* concatenates the lists containing x and y, and

« updates the rep pointers for all elements in the
list containing y.

S, U rep
S T
EEE=NE »
repls] \ [—— |
\|J/1| —':l— |J’2| —':l— |J’3| |
replS,]

3/24/09 CS 5633 Analysis of Algorithms 12

@3 Example of
=" augmented linked-list solution

Each element x; stores pointer rep[x;] to rep[S,].
UNION(x, v)
* concatenates the lists containing x and y, and
* updates the rep pointers for all elements in the
list containing y.

5.8,

T —
|x1| —':l— |x2|\

replS,US,]

rep

N e N Y e N Y

3/24/09 CS 5633 Analysis of Algorithms 13

“.«" Alternative concatenation

UNION(x, y) could instead
* concatenate the lists containing y and x, and
* update the rep pointers for all elements in the
list containing x.

rep

rep S | |x1| -I:L |x2| |
l l—l | I‘ep [S\]
St Ll 7= Dol =4[] |
repls,]
3/24/09 ’ CS 5633 Analysis of Algorithms 14

"« Alternative concatenation

UNION(x, y) could instead
* concatenate the lists containing y and x, and
* update the rep pointers for all elements in the
list containing x.

| |£§J |
o / X X
S VS, — / "ep[lS,\-])

| |)’1| —':l— |)’2| —':l— |)’3|/

rep[S,]

3/24/09 CS 5633 Analysis of Algorithms 15

"« Alternative concatenation

UNION(x, y) could instead
* concatenate the lists containing y and x, and
* update the rep pointers for all elements in the
list containing x.

rep

1 |
, A=
S uS : rep
I |/
| |)’1| —':l— |)’2| —':l— |y3|

rep[S, U S,]

3/24/09 CS 5633 Analysis of Algorithms 16

""'" Trick 1: Smaller into larger
S (weighted-union heuristic)

To save work, concatenate the smaller list onto the
end of the larger list. Cost = ®(length of smaller list).
Augment list to store its weight (# elements).

* Let n# denote the overall number of elements

(equivalently, the number of MAKE-SET operations).

* Let m denote the total number of operations.
* Let / denote the number of FIND-SET operations.

Theorem: Cost of all UNION’s is O(n log 7).
Corollary: Total cost is O(m + n log n).

3/24/09 CS 5633 Analysis of Algorithms 17

'F-: Analysis of Trick 1
WY (weighted-union heuristic)

Theorem: Total cost of UNION’s is O(7 log n).

Proof. » Monitor an element x and set S, containing it.
» After initial MAKE-SET(x), weight[S] = 1.
* BEach time S is united with S :
o if wezght[S 1 = weight[S.]:
—pay 1 to update rep[x], and
— weight[S,] at least doubles (increases by weight[S,])
e if wezght[S] <weight[S.]:
— pay nothlng, and
— weight[S.] only increases.
Thus pay < log n for x. O

3/24/09 CS 5633 Analysis of Algorithms 18

= Disjoint set forest:
o Representing sets as trees

Store each set S; = {x,, x,, ..., x, } as an unordered,
potentially unbalanced, not necessarily binary tree,
storing only parent pointers. rep[S;] is the tree root.

* MAKE-SET(x) initializes x = {31, Xy X3y X X5 5 X}
asalonenode. —O(1) '

* FIND-SET(x) walks up the
tree containing x until it
reaches the root. — O(depth|x])

* UNION(x,) calls FIND-SET twice
and concatenates the trees
containing x and y...— O(depth|x])

3/24/09 CS 5633 Analysis of Algorithms 19

"o~ Trick 1 adapted to trees

» UNION(x, y) can use a simple concatenation strategy:
Make root FIND-SET()’) a child of root FIND-SET(x).
= FIND-SET()’) = FIND-SET(x).

 Adapt Trick 1 to this context:
Union-by-weight:
Merge tree with smaller
weight into tree with
larger weight.

* Variant of Trick 1 (see book):
Union-by-rank:
rank of a tree = its height

3/24/09 CS 5633 Analysis of Algorithms 20

=7 Trick 1 adapted to trees
S b (union-by-weight)
* Height of tree is logarithmic in weight, because:
* Induction on n
* Height of a tree 7' is determined by the two subtrees
T\, T, that T has been united from.
* Inductively the heights of 7, 7, are the logs of their
weights.
* If 7, and T, have different heights:
height(7) = max(height(7’), height(7?))
= max(log weight(7), log weight(7’))
<log weight(7)
e If 7, and 7, have the same heights:
(Assume 2<weight(7)<weight(7))
height(7) = height(7)) + 1 < log (2*weight(7)))
< log weight(7)

* Thus the total cost of any m operations is O(m log n).
3/24/09 CS 5633 Analysis of Algorithms 21

"~ Trick 2: Path compression

When we execute a FIND-SET operation and walk
up a path p to the root, we know the representative
for all the nodes on path p.

Path compression makes

all of those nodes direct

children of the root.
V3

Cost of FIND-SET(x)
1s still O(depth|x]).
(depthlx]) FIND-SET(y,) [)2

3/24/09 CS 5633 Analysis of Algorithms 22

< Trick 2: Path compression

When we execute a FIND-SET operation and walk
up a path p to the root, we know the representative
for all the nodes on path p.

Path compression makes
all of those nodes direct
children of the root.

Cost of FIND-SET(x)

y 1
is still O(depth[x]). FIND-SET(),) @k
- 2

3/24/09 CS 5633 Analysis of Algorithms 23

o~ Trick 2: Path compression

When we execute a FIND-SET operation and walk
up a path p to the root, we know the representative
for all the nodes on path p.

Path compression makes
all of those nodes direct
children of the root.

Cost of FIND-SET(x)
is still ©(depth[x]).

FIND-SET(y,)

3/24/09 CS 5633 Analysis of Algorithms 24

.............

"~ Trick 2: Path compression

* Note that UNION(x,) first calls FIND-SET(x) and
FIND-SET(y). Therefore path compression also
affects UNION operations.

3/24/09 CS 5633 Analysis of Algorithms 25

.............

“.<* Analysis of Trick 2 alone

Theorem: Total cost of FIND-SET’s is O(m log n).
Proof: By amortization. Omitted.

3/24/09 CS 5633 Analysis of Algorithms 26

uuuuuuuuuuuuu

Y it’s “1nverse” o

Define 4, () = j+1 if k=0,

ehne St/ = A/(cj])(j) if k>1. —iterate;+1 times
A)=j+1 Ay(1)=2

A()~2; A(1)=3

A()~2j 2> A(1)=17

A4(1)=2047

A5(j) > 2

22047
22" }2048 times
A,(j) is a lot bigger. A,(1)>2

Define o(n) = min {k: 4,(1) = n} <4 for practlcal n.

3/24/09 CS 5633 Ana Iy of Algorithms

uuuuuuuuuuuuu

=77 Analysis of Tricks 1 + 2
" for disjoint-set forests

Theorem: In general, total cost is O(m ou(n)).
(long, tricky proof — see Section 21.4 of CLRS)

3/24/09 CS 5633 Analysis of Algorithms 28

