CS 5633 Analysis of Algorithms — Spring 08
2/21/08

5. Homework
Due 2/28/08 before class

1. Red-black trees (6 points)
Find a sequence of numbers which, when incrementally inserted into a red-black tree, causes
the following sequence of rotations:

left, right, right, left.

You may start with an initially non-empty tree, and you may insert numbers that do not cause
any rotations. But there should not be any additional rotations performed.

Draw the sequence of trees that you obtain after each insertion. For each such tree indicate
the node that violates the red-black tree condition, indicate the nodes that participate in the
rotation, the type of the rotation, and the subtrees that correspond to each other before and
after the rotation.

Hint: Use a red-black tree demo from the web.

2. Deterministic select (6 points)
Consider two variations of the deterministic selection algorithm:

a) Divide into groups of 7.
b) Divide into groups of 3.

Show that the runtime proof of O(n) works fine in case a). In case b) show where you run
into problems when trying to prove a runtime of O(n).

3. Median computation (6 points)
Suppose arrays A and B are both sorted and contain n elements each. Give a randomized
divide-and-conquer algorithm to find the median of AUB in expected O(logn) time. (Describe
it either in words or as pseudo-code; whatever you prefer). Argue shortly why the runtime
is O(logn). Hint: Take a look at randomized select.

4. Multi-min (6 points)
Consider the following task: Given an unsorted array of n numbers, find the k smallest numbers
and output them in sorted order.
Describe three inherently different algorithms that solve this problem. Analyze their runtimes
in terms of n and k (so you should have n and k in the big-Oh notation). Try to find the
fastest possible algorithm. Which of your algorithms is the fastest?



Related questions from previous PhD Exams
Just for your information. You do not need to solve them for homework credit.
1. This problem is concerned with binary search trees and the successors of a node.

(a) Define “binary search tree”.

(b) Given a node z in a binary search tree, write an efficient procedure in pseudocode to
find the successor of . Assume that nodes have fields left, right, parent, and key. What
is the running time of your procedure in terms of n and h? (Justify your answer.)

(¢) Consider the following procedure to print all n elements of a binary search tree in order:
First find the minimum element and then make n — 1 calls to your successor procedure.
What is the running time of this procedure? (Justify your answer.)

(d) For a binary search tree, determine the running time of finding a value v and then
performing m successive calls to your successor procedure. (Justify your answer.)

2. The k-way merging problem is concerned with merging k sorted lists, each containing n/k
elements, into a single sorted list of n elements.

(a) Consider the incremental algorithm which merges the first two lists into a sorted list of
2n/k elements, then merges the result with the third list, then with the fourth list, and
so on. Analyze the worst-case running time of the incremental algorithm in terms of n
and k.

(b) The incremental algorithm is not efficient. Describe a more efficient algorithm for the
k-way merging problem. Analyze its worst-case running time in terms of n and k. (For
simplicity you may assume k is a power of 2.)

(¢c) What is the space complexity of the two above algorithms?

(d) In this part we will derive a lower bound for the k-way merging problem, assuming that
the merging is done by performing comparisons.

i. The elements of the k lists could end up in various positions in the final merged
list. Argue that there are n!/((n/k)!)¥ possible different ways for all elements of the
k lists to be placed in the final list.
(Hint: First choose n/k out of the n positions for the first list, then choose n/k out
of the remaining n — k positions for the second list, and so on.)

ii. Use part A to prove a lower bound of Q(nlog k) on the worst-case number of

comparisons needed for the k-way merging problem. Use the fact that
(nfe)® < nl<n™



