CS 5633 Analysis of Algorithms — Spring 08
1/24/08

2. Homework
Due 1/31/08 before class

Always justify your answers.
1. Divide and Conquer (5 points)

(a) (3 points) Design a divide-and-conquer algorithm to compute the
average of an array of n numbers. Describe your algorithm in
pseudo-code with verbal explanation. (Note: No points will be given for
an algorithm that does not have divide-and-conquer properties.)

(b) (2 points) Set up and solve a recurrence relation for the runtime of your
algorithm. (You do not need to prove it by induction. A justification for
your guess is enough.)

2. Minimum element (3 points)
Where is the minimum element located in a max-heap? How can you compute
the minimum? How much time does it take in the worst case (assuming the
heap contains n elements)?

3. Heaps with links (9 points)

Suppose that binary max-heaps are represented using explicit links, that
means in a standard binary tree representation that uses nodes with
pointers/references to left and right children. These heaps, although not
represented in arrays, are still required to be almost complete.

Consider the problem of merging the binary max-heap L with the binary
max-heap R. Assume both heaps are complete trees: L has height [ and
contains 2! — 1 nodes, and R has height r and contains 2" — 1 nodes. Let
n = max{2! — 1,2" — 1}.

a) (3 point)

Give an O(logn) algorithm to merge the two heaps if [ = r.

b) (3 point)

Give an O(logn) algorithm to merge the two heaps if || — r| = 1.

c¢) (3 point)

Give an O(log® n) algorithm to merge the two heaps regardless of I and r.
(Hint: Break the larger heap into smaller subheaps and apply a) and b).
Note that a) and b) can even be applied if one of the heaps is almost
complete.)
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4. Guessing and Induction (9 points)

For each of the following recurrences use the recursion tree method to find a
good guess of what it could solve to (make your guess as tight as possible).
Then prove that T'(n) is in big-Oh of your guess by induction (inductive step
and base case). (Hint: Appendiz A in the book has a list of solved summations
that might be helpful. For simplicity you may want to use logz n instead of
logy n for the first question.)

Every recursion below is stated for n > 2, and the base case is T'(1) = 1.
(a) (3 points)
T(n) =3T(%)+2n
(b) (3 points)
T(n) = 2T (%) + n?
(c) (3 points)
T(n) =4T(%) +n



