CS 5633 Analysis of Algorithms — Spring 08
1/24/08

2. Homework
Due 1/31/08 before class

Always justify your answers.
1. Divide and Conquer (5 points)

(a) (3 points) Design a divide-and-conquer algorithm to compute the
average of an array of n numbers. Describe your algorithm in
pseudo-code with verbal explanation. (Note: No points will be given for
an algorithm that does not have divide-and-conquer properties.)

(b) (2 points) Set up and solve a recurrence relation for the runtime of your
algorithm. (You do not need to prove it by induction. A justification for
your guess is enough.)

2. Minimum element (3 points)
Where is the minimum element located in a max-heap? How can you compute
the minimum? How much time does it take in the worst case (assuming the
heap contains n elements)?

3. Heaps with links (9 points)

Suppose that binary max-heaps are represented using explicit links, that
means in a standard binary tree representation that uses nodes with
pointers/references to left and right children. These heaps, although not
represented in arrays, are still required to be almost complete.

Consider the problem of merging the binary max-heap L with the binary
max-heap R. Assume both heaps are complete trees: L has height [ and
contains 2! — 1 nodes, and R has height r and contains 2" — 1 nodes. Let
n = max{2! — 1,2" — 1}.

a) (3 point)

Give an O(logn) algorithm to merge the two heaps if [ = r.

b) (3 point)

Give an O(logn) algorithm to merge the two heaps if || — r| = 1.

c¢) (3 point)

Give an O(log® n) algorithm to merge the two heaps regardless of I and r.
(Hint: Break the larger heap into smaller subheaps and apply a) and b).
Note that a) and b) can even be applied if one of the heaps is almost
complete.)

FLIP OVER TO BACK PAGE —



4. Guessing and Induction (9 points)

For each of the following recurrences use the recursion tree method to find a
good guess of what it could solve to (make your guess as tight as possible).
Then prove that T'(n) is in big-Oh of your guess by induction (inductive step
and base case). (Hint: Appendiz A in the book has a list of solved summations
that might be helpful. For simplicity you may want to use logz n instead of
logy n for the first question.)

Every recursion below is stated for n > 2, and the base case is T'(1) = 1.
(a) (3 points)
T(n) =3T(%)+2n
(b) (3 points)
T(n) = 2T (%) + n?
(c) (3 points)
T(n) =4T(%) +n



