Practice test questions

$1 \quad \text{Big-Oh} - 6 \text{ points}$

Rank the following functions according to their asymptotic order of growth. Additionally, indicate which functions are in Θ of each other. (Just as on the first homework). You **do not** need to justify your answers.

42,
$$\log_3 n$$
, n^n , $n + \log n$, \sqrt{n} , $\log_2 n$, 1, $n!$, n , $\sqrt[3]{n}$, $n \log n$, n^3

2 Master Theorem – 6 points

Solve the following recurrences using the master theorem. Justify your answers shortly.

```
1. T(n) = 36T(n/6) + n^3
```

2.
$$T(n) = 7T(n/2) + \sqrt{n}$$

3 Recurrence – 6 points

Consider the following recursive procedure:

```
\begin{array}{l} {\rm mystery}(n) \\ {\rm if} \ n <= 1 \ {\rm return} \ 1 \\ {\rm else} \\ x = {\rm mystery}(n/3) \\ {\rm return}(x*x*x) \end{array}
```

- 1. Set up a runtime recurrence for mystery(n).
- 2. What does the runtime recurrence solve to? (No justification needed.)

4 Code Snippets – 8 points

For each of the code snippets below give their big-Oh runtime depending on n. Make your bounds AS TIGHT AS POSSIBLE. (No justification needed.)

```
a) for(i=n; i>=1; i=i/2){
    for(j=1; j<=n; j=j+5){
        print("hello");
    }
}</pre>
```

```
b) for(i=1; i*i<=n; i=i+1){
    for(j=1; j<=n; j=j*5){
        print("hello");
    }
}</pre>
```

5 Sorting Runtimes – 8 points

Consider the input array

$$4, 5, 6, \ldots, n, n+1, n+2, n+3$$

of n numbers.

- 1. What is the runtime of running **Insertion Sort** on this array? (no justification needed)
- 2. What is the runtime of running **Mergesort** on this array? (no justification needed)
- 3. What is the runtime of running **Deterministic Quicksort** (pivot = first array element) on this array? (no justification needed)
- 4. What is the **expected** runtime of running **Randomized Quicksort** on this array? (no justification needed)

6 Expected Value – 8 points

Consider playing the following game: You roll a fair six-sided die. If a 1 or a 2 comes up you pay 2\$, if a 3 or a 4 comes up you pay 1\$, and if a 5 or a 6 comes up you get 4\$.

- 1. What is the underlying sample space S?
- 2. What is the probability of rolling a 3?
- 3. Define a random variable X that describes the win/loss of the game. (Remember, a random variable is a function of elements in S)
- 4. Compute the expected value of X.