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B-trees
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“«* External memory dictionary

Task: Given a large amount of data that does
not fit into main memory, process it into a
dictionary data structure

* Need to minimize number of disk accesses

» With each disk read, read a whole block of
data

« Construct a balanced search tree that uses one
disk block per tree node

» Each node needs to contain more than one key
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" k-ary search trees

A k-ary search tree T is defined as follows:
*For each node x of T:
* x has at most & children (i.e., T is a k-ary tree)

* x stores an ordered list of pointers to its children,
and an ordered list of keys

* For every internal node: #keys = #children- 1
« x fulfills the search tree property:

keys in subtree rooted at i-th child < i-th key <
keys in subtree rooted at (i+1)-st child
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" Example of a 4-ary tree

2/23/06 CS 5633 Analysis of Algorithms 4

.~ Example of a 4-ary search tree
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“ o~ B-tree

A B-tree T with minimum degree £ > 2 is
defined as follows:

1. Tisa(2k)-ary search tree

2. Every node, except the root, stores at least
k-1 keys
(every internal non-root node has at least &
children)

3. The root must store at least one key

4. All leaves have the same depth
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" * B-tree with /=2

"< B-tree with i=2

1. T is a (2k)-ary search tree
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2. Every node, except the root, stores at least
k-1 keys
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"<~ B-tree with /=2

3. The root must store at least one key
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" <" B-tree with /=2

12 15 21

4. All leaves have the same depth
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B3R B-tree with /=2

12 15 21

Remark: This is a (2,3,4)-tree.
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“.w" Height of a B-tree

Theorem: A B-tree with minimum degree & > 2
which stores # keys has height / at most
log, (n+1)/2

Proof: #nodes > 14+2+2/k+2k>+. . +2)"!

/ 1e\{ell\ 1.6\V613
level 0 level 2

h-1 A
n =tkeys > 1+(k-1) 22k = 1+2(k-1)- f L =2k
O
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s { B-tree search

B-TREE-SEARCH(x,ke))

i<« 1

while i<#keys of x and key > i-th key of x
do i« i+l

if i<#tkeys of x and key = i-th key of x
then return (x,7)

if x is a leaf
then return NIL

else »=DISK-READ(i-th child of x)
return B-TREE-SEARCH(D,key)
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s { B-tree search runtime

v

* O(k) per node
» Path has height /# = O(log, n)
» CPU-time: O(k log, n)

* Disk accesses: O(log, n)

disk accesses are more expensive than CPU time
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e Y B-tree insert

™

* There are different insertion strategies. We just cover
one of them

* Make one pass down the tree:
* The goal is to insert the new key key into a leaf
* Search where key should be inserted
* Only descend into non-full nodes:

» If a node is full, split it. Then continue
descending.

« Splitting of the root node is the only way a B-
tree grows in height
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SN B-TREE-SPLIT-CHILD(x,i,))

* Split full no! y into two nodes y and z of k-1 keys

of y is moved up into y’s parent x
» Example below for k = 4

YOt Y Y Y Y
T T Ty Ty Ts Ty T3 Ty
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"~ Split root: B-TREE-SPLIT-CHILD(s, ")
* The full root node 7 is split in two.

* A new root node s is created
* 5 contains the median key I
two halves of 7 as children

» Example below for k=4

of  and has the

root(T]
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.;'.f:, Y B-TREE-INSERT(T key)

r=root[7]

if (# keys in 7) = 2/k-1 // root r is full
//insert new root node:
s <— ALLOCATE-NODE()
root[7] < s
// split old root r to be two children of new root s
B-TREE-SPLIT-CHILD(s, 1 ,7)
B-TREE-INSERT-NONFULL(s,key)

else B-TREE-INSERT-NONFULL(s,key)
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,-‘—,5 B-TREE-INSERT-NONFULL(x,key)

if x is a leaf then
insert key at the correct (sorted) position in x
DISK-WRITE(x)
else
find child ¢ of x which by the search tree property
should contain key
DISK-READ(c)
if ¢ is full then // ¢ contains 24-1 keys
B-TREE-SPLIT-CHILD(x,/,c)
B-TREE-INSERT-NONFULL(c,k)
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,-"'—,\ Insert example (k=3)

e Insert B:

Ivo| [rsTuv||rZz]

Ivo| [rsTuv||rZ|
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s { Insert example (£=3) -- cont.

[iscbe] 4

* Insert O:

Ino| [rsTuv||rz]
node is full

|4BCcDE | Ivo|[ors| [ur] [rz]
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,‘-‘“‘,-\! Insert example (A~=3) -- cont.
node is full

| 4BCDE] Ivol [ors|[ur] |rz]

e Insert L:

|4BcpE |[skL][No][ors|[uv] [rZ]
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.« Insert example (A=3) -- cont.

/.\
node is

| 4BCDE ||JKL||N0| lors][urv] |rz]

e Insert F: /.\
Py

|ABHDEF||JKL ~Nollors|[uv] |rz]
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e J Runtime of B-TREE-INSERT

* O(k) runtime per node
* Path has height /» = O(log, n)
» CPU-time: O(k log, n)

* Disk accesses: O(log, n)

disk accesses are more expensive than CPU time
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re— .
“« Deletion of an element

« Similar to insertion, but a bit more complicated,;
see book for details

« If sibling nodes get not full enough, they are merged
into a single node

» Same complexity as insertion
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" B-trees -- Conclusion

 B-trees are balanced k-ary search trees

* The degree of each node is bounded from
above and below using the parameter &

* All leaves are at the same height

* No rotations are needed: During insertion (or
deletion) the balance is maintained by node
splitting (or node merging)

* The tree grows (shrinks) in height only by
splitting (or merging) the root
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