BEm CS 5633 --Spring 2006
:-n““ :
ALGORITHMS

~
.

=
1\“ \‘

Union-Find Data Structures

Carola Wenk
Slides courtesy of Charles Leiserson with small
changes by Carola Wenk
3/30/06 CS 5633 Analysis of Algorithms

@7 Disjoint-set data structure
=" (Union-Find)
Problem:
* Maintain a dynamic collection of pairwise-disjoint
sets S= {5, 5,, ..., S }.
* Each set S, has one element distinguished as the
representative element, rep[S.].
» Must support 3 operations:
* MAKE-SET(x): adds new set {x} to S
with rep[{x}]=x (forany x ¢ S forall i)
* UNION(x, y): replaces sets S, S, with S, U S in S
(for any x, y in distinct sets S.S)) '
* FIND-SET(x): returns representative rep[S. |

of set S| containing element x
3/30/06 CS 5633 Analysis of Algorithms 2

=7 Disjoint-set data structure
" (Union-Find) II

* In all operations the elements x, y are

given (as pointers or references for example)

* Hence, we do not need to first search for the
element in the data structure.

* Let n denote the overall number of elements
(equivalently, the number of MAKE-SET
operations).

3/30/06 CS 5633 Analysis of Algorithms

;“‘,':,i Simple linked-list solution

Store each set S, = {x,, x,, ..., x,.} as an (unordered)
doubly linked list. Define representative element
rep|S.] to be the front of the list, x,.

S [Tl = Pl I E Tl]
rep[Si]
O(1) = MAKE-SET(x) initializes x as a lone node.
» FIND-SET(x) walks left in the list containing
©(n) x until it reaches the front of the list.
®(n) * UNION(x, y) calls FIND-SET on x and y and
concatenates the lists containing
x and y, leaving rep. as FIND-SET|[x].

3/30/06 CS 5633 Analysis of Algorithms 4

1%

P . .
“.«~ Simple balanced-trec._sgju_tjm_‘
maintain how?
Store each set S, = {x,, x,, ..., x, } as abalanced free
(ignoring keys). Define representative element
rep[S;] to be the root of the tree.

.= (X, X, X3, Xy X}
« MAKE-SET(x) initializes x =~ 77~ U2t ts)

O(1)" a5 a lone node.
Olos 1 FIND-SET(x) walks up the tree
(192) containing x until reaching root.
o(log ;)UNION()C, v) calls FIND-SET on
x and y and concatenates the
trees containing x and y,
changing rep. of x or y

3/30/06 CS 5633 Analysis of Algorithms 5

‘..~ Plan of attack

* We will build a simple disjoint-union data structure
that, in an amortized sense, performs significantly
better than ®(log 7) per op., even better than
O(log log n), O(log log log n), ..., but not quite O(1).

*To reach this goal, we will introduce two key #ricks.
Each trick converts a trivial ®(7) solution into a
simple ®(log) amortized solution. Together, the
two tricks yield a much better solution.

* First trick arises in an augmented linked list.
Second trick arises in a tree structure.

3/30/06 CS 5633 Analysis of Algorithms 6

.‘..?- Augmented linked-list solution

e

Store S, = {x,, x,, ..., x,.} as unordered doubly linked list.
Augmentation: Each element x; also stores pointer
rep[x] to rep[S;] (which is the front of the list, x)).

rep
I— |
SR Y I =N Y [e B A
rep[S;]
* FIND-SET(x) returns rep|x]. - 0O(1)

» UNION(x, y) concatenates lists containing
x and y and updates the rep pointers for
all elements in the list containing y. — O(n)
7

3/30/06 CS 5633 Analysis of Algorithms

-a—-‘ Example of
»" augmented linked-list solution

Each element x; stores pointer rep[x;] to rep[S,].
UNION(x,)
* concatenates the lists containing x and y, and
« updates the rep pointers for all elements in the
list containing y.

rep
s.: (RO »
rep[S,] l— |
S, | J’1| —':l— |J’2| —':l— |J’3| |
rep[S,]
3/30/06 CS 5633 Analysis of Algorithms 8

@3 Example of
=" augmented linked-list solution

Each element x; stores pointer rep[x;] to rep[S,].
UNION(x, v)
* concatenates the lists containing x and y, and
* updates the rep pointers for all elements in the
list containing y.

S.US,;: _ rep

A w—

| X1| -':L |X2|\ rep

repls,] — |

1 | 1 |
))’1| —+ |)’2| —+ |)’3| |
rep[S,]
3/30/06 CS 5633 Analysis of Algorithms 9

@3 Example of
=" augmented linked-list solution

Each element x; stores pointer rep[x;] to rep[S,].
UNION(x,)
* concatenates the lists containing x and y, and
* updates the rep pointers for all elements in the
list containing .

AR

T —
|x1| —':l— |x2|\

rep[S, v S,]

rep

\|J’1| —1:1- |J’2| —1-:-1- |y3| |

3/30/06 CS 5633 Analysis of Algorithms 10

"« Alternative concatenation

UNION(x, y) could instead
* concatenate the lists containing y and x, and
* update the rep pointers for all elements in the
list containing x.

rep
1
rep S | x1| '.:'l_|x2| |
SR E=N =N

replS,]

3/30/06 CS 5633 Analysis of Algorithms 1

"« Alternative concatenation

UNION(x, y) could instead
* concatenate the lists containing y and x, and
* update the rep pointers for all elements in the
list containing x.

I/] ‘LZL o] |
/1% *2
R — s,

| |Y1| —':l— |Y2| —':l— |y3|/

repls,)
3/30/06 CS 5633 Analysis of Algorithms 12

" Alternative concatenation

UNION(x, v) could instead
* concatenate the lists containing y and x, and
* update the rep pointers for all elements in the
list containing x.

rep

1 |
J/|x1| —':1— |x2| |

5.8, rep

BE=NNE=N
repls,US,]

3/30/06 CS 5633 Analysis of Algorithms 13

| /

""'" Trick I: Smaller into larger
Shb (weighted-union heuristic)

To save work, concatenate smaller list onto the end
of the larger list. Cost = ©(length of smaller list).
Augment list to store its weight (# elements).

* Let n denote the overall number of elements
(equivalently, the number of MAKE-SET operations).

* Let m denote the total number of operations.

* Let /' denote the number of FIND-SET operations.

Theorem: Cost of all UNION’s is O(n log).

Corollary: Total cost is O(m + n log n).

3/30/06 CS 5633 Analysis of Algorithms 14

=7 Analysis of Trick 1
WY (weighted-union heuristic)

Theorem: Total cost of UNION’s is O(n log n).

Proof. « Monitor an element x and set S, containing it.
* After initial MAKE-SET(x), weight[S] 1.
* Each time S, is united with S, weight[S] = weight[S,],
* pay | to update rep|x], and
* weight[S,] at least doubles (increases by weighi[S).
* Each time S, is united with smaller set S,
* pay nothmg, and
* weight[S_ | only increases.
Thus pay < log n for x.

3/30/06 CS 5633 Analysis of Algorithms 15

= Disjoint set forest:
3" Representing sets as trees

Store each set S; = {x,, x,, ..., x, } as an unordered,
potentially unbalanced, not necessarily binary tree,
storing only parent pointers. rep[S.] is the tree root.

* MAKE-SET(x) initializes x S,= {X}, X, X3, X4y X5, Xg

asalonenode. —O(1) 1 '
* FIND-SET(x) walks up the

tree containing x until it

reaches the root. — O(depth|x])
* UNION(x, y) concatenates

the trees containing x and y...

3/30/06 CS 5633 Analysis of Algorithms 16

"~ Trick 1 adapted to trees

» UNION(x, y) can use a simple concatenation strategy:
Make root FIND-SET()’) a child of root FIND-SET(x).
= FIND-SET()) = FIND-SET(x).

» Adapt Trick 1 to this context:
Union-by-weight:
Merge tree with smaller
weight into tree with
larger weight.

* Variant of Trick 1 (see book):
Union-by-rank:
rank of a tree = its height

3/30/06 CS 5633 Analysis of Algorithms 17

70 Trick 1 adapted to trees
V" (union-by-weight)

* Height of tree is logarithmic in weight, because:
* Induction on the weight
* Height of a tree T is determined by the two
subtrees T, T, that T has been united from.
* Inductively the heights of T,, T, are the logs
of their weights.
* height(T) = max(height(T,), height(T,))
possibly +1, but only if T,, T, have same height

* Thus total cost is O(m log n).

3/30/06 CS 5633 Analysis of Algorithms 18

"« Trick 2: Path compression

When we execute a FIND-SET operation and walk
up a path p to the root, we know the representative
for all the nodes on path p.

Path compression makes
all of those nodes direct
children of the root.

Cost of FIND-SET(x)
is still O(depth|x]).

FIND-SET(y,) @

3/30/06 CS 5633 Analysis of Algorithms 19

"« Trick 2: Path compression

When we execute a FIND-SET operation and walk
up a path p to the root, we know the representative
for all the nodes on path p.

Path compression makes
all of those nodes direct
children of the root.

FIND-SET(y,) @

Cost of FIND-SET(x)
is still ©(depth[x]).

3/30/06 CS 5633 Analysis of Algorithms 20

"~ Trick 2: Path compression

When we execute a FIND-SET operation and walk
up a path p to the root, we know the representative
for all the nodes on path p.

Path compression makes
all of those nodes direct
children of the root.

Cost of FIND-SET(x)
is still O(depth|x]).

FIND-SET(y,)

3/30/06 CS 5633 Analysis of Algorithms 21

"~ Trick 2: Path compression

* Note that UNION(x,) first calls FIND-SET(x)
FIND-SET(y). Therefore path compression also
affects UNION operations.

3/30/06 CS 5633 Analysis of Algorithms 22

“<* Analysis of Trick 2 alone

Theorem: Total cost of FIND-SET’s is O(m log n).
Proof: By amortization. Omitted.

Theorem: If all UNION operations occur before
all FIND-SET operations, then total cost is O(m).

Proof: If a FIND-SET operation traverses a path
with & nodes, costing O(k) time, then & — 2 nodes
are made new children of the root. This change
can happen only once for each of the » elements,
so the total cost of FIND-SET is O(m). [

3/30/06 CS 5633 Analysis of Algorithms 23

=7 Ackermann’s function 4, and
w0 it’s “Inverse” o

Define 4, (/) = j+1 if k=0,
oHme 4= A/E]jlrl)(j) if k£ >1. —iteratej+1 times
A)=j+1 Ay(1)=2
A(~2j A40)=3
) ~22>2 A(1)=T

Ay(1) = 2047

.2/
)2 }j
A5()> 2
A,(j) is a lot bigger. A4,(1)>2

Define oun) = min {k: 4,(1) = n} <4 for practical n.

3/30/06 CS 5633 Analysis of Algorithms 24

22047
22" }2048 times

=77 Analysis of Tricks 1 + 2 =7 Application:
=" for disjoint-set forests " Dynamic connectivity

Theorem: In general, total cost is O(m a(n)).

(long, tricky proof — see Section 21.4 of CLRS) Suppose a graph is given to us incrementally by

* ADD-VERTEX(V)
* ADD-EDGE(u, v)

and we want to support connectivity queries:
* CONNECTED(1, v):
Are 1 and v in the same connected component?

For example, we want to maintain a spanning forest,
so we check whether each new edge connects a
previously disconnected pair of vertices.

3/30/06 CS 5633 Analysis of Algorithms 25 3/30/06 CS 5633 Analysis of Algorithms 26

-a--‘ Application:
~*'" Dynamic connectivity

Sets of vertices represent connected components.
Suppose a graph is given to us incrementally by

* ADD-VERTEX(V) : MAKE-SET(V)

* ADD-EDGE(1, v) : if not CONNECTED(u, V)

then UNION(v, w)

and we want to support connectivity queries:

* CONNECTED(1, v): : FIND-SET(12) = FIND-SET(V)

Are u and v in the same connected component?

For example, we want to maintain a spanning forest,
so we check whether each new edge connects a
previously disconnected pair of vertices.

3/30/06 CS 5633 Analysis of Algorithms 27

