

CS 5633 -- Spring 2006

Range Trees

Carola Wenk

Slides courtesy of Charles Leiserson with small changes by Carola Wenk

3/7/06

CS 5633 Analysis of Algorithms

1D range searching

In 1D, the query is an interval:

New solution that extends to higher dimensions:

- · Balanced binary search tree
 - New organization principle: Store points in the *leaves* of the tree.
 - Internal nodes store copies of the leaves to satisfy binary search property:
 - Node x stores in key[x] the maximum key of any leaf in the left subtree of x.

3/7/06

CS 5633 Analysis of Algorithms

Analysis of 1D-Range-Query

Query time: Answer to range query represented by $O(\log n)$ subtrees found in $O(\log n)$ time. Thus:

- Can test for points in interval in $O(\log n)$ time.
- Can report the first k points in interval in $O(k + \log n)$ time.
- Can count points in interval in O(log n) time (exercise)

Space: O(n)

Preprocessing time: $O(n \log n)$

3/7/06 CS 5633 Analysis of Algorithms

Analysis of 2D range trees

Query time: In $O(\log^2 n) = O((\log n)^2)$ time, we can represent answer to range query by $O(\log^2 n)$ subtrees. Total cost for reporting k points: $O(k + (\log n)^2)$.

Space: The secondary trees at each level of the primary tree together store a copy of the points. Also, each point is present in each secondary tree along the path from the leaf to the root. Either way, we obtain that the space is $O(n \log n)$.

Preprocessing time: $O(n \log n)$

3/7/06 CS 5633 Analysis of Algorithms

16

d-dimensional range trees

Each node of the secondary *y*-structure stores a tertiary *z*-structure representing the points in the subtree rooted at the node, etc.

Query time: $O(k + \log^d n)$ to report k points.

Space: $O(n \log^{d-1} n)$

Preprocessing time: $O(n \log^{d-1} n)$

Best data structure to date:

Query time: $O(k + \log^{d-1} n)$ to report k points.

Space: O($n (\log n / \log \log n)^{d-1}$) Preprocessing time: $O(n \log^{d-1} n)$

3/7/06

CS 5633 Analysis of Algorithms

17