EE@ CS 5633 -- Spring 2006

5 £ |
ALGORITHMS
Order Statistics
Carola Wenk
Slides courtesy of Charles Leiserson with small
changes by Carola Wenk
2/14/06 CS 5633 Analysis of Algorithms 1

.............

=1 Order statistics

Select the ith smallest of # elements (the

element with rank 7).

* [=1: minimum;

* [= n: maximum;

«i=[(n+1)2or[(n+1)/2]: median.

Naive algorithm: Sort and index /th element.

Worst-case running time = O(n log n) + O(1)
= O(n log n),

using merge sort or heapsort (not quicksort).

@+ Randomized divide-and-
«>" conquer algorithm
RAND-SELECT(A4, p, g, /) > ith smallest of A[p..¢]

if p =g then return 4[p]
7 <— RAND-PARTITION(4, p, ¢)

k<—r—-p+1 > k = rank(4[r])
if i =/ then return 4| |
if i<k

then return RAND-SELECT(4, p, r— 1, 1)
else return RAND-SELECT(A, r + 1, ¢, 1 — k)
k
| <4[r] > A[r]
P r q

2/14/06 CS 5633 Analysis of Algorithms 3

2/14/06 CS 5633 Analysis of Algorithms 2
.............
= o~ Example

i
'

Select the / = 7th smallest:

o013 s|8[3]2]1] i=7
pivot

Partition:

12536 |8]13]10]11] k=4

. _J
Y~

Select the 7 — 4 = 3rd smallest recursively.

2/14/06 CS 5633 Analysis of Algorithms 4

uuuuuuuuuuuuu

.-"‘;-,a Intuition for analysis

(All our analyses today assume that all elements
are distinct.)

Lucky:
T(n) = T(9n/10) + O(n) nlogionl = 50 =1
= 0(n) CASE 3
Unlucky:
T(n)=T(n—-1)+ O(n) arithmetic series
= 0Q(n?)

Worse than sorting!

2/14/06 CS 5633 Analysis of Algorithms 5

uuuuuuuuuuuuu

:"-;-;,a Analysis of expected time

The analysis follows that of randomized
quicksort, but it’s a little different.

Let 7(n) = the random variable for the running
time of RAND-SELECT on an input of size 7,
assuming random numbers are independent.

For k=0, 1, ..., n—1, define the indicator
random variable

B { 1 if PARTITION generates a & : n—k—1 split,
X, = .
0 otherwise.

2/14/06 CS 5633 Analysis of Algorithms

uuuuuuuuuuuuu

“" - Analysis (continued)

To obtain an upper bound, assume that the i th element
always falls in the larger side of the partition:
T(max{0, n—1})+ O(n) 1f0: n—1 split,
T(max{1,n-2})+Om) ifl:n-2 split,
I(n) = :
T(max{n—1,0})+On) ifn-1:0 split,
n—1
=Y X (T(max{k,n—k—1})+0(n))

k=0

n—1

<2 Y X, (T(k)+©(n))
k=[n/2|

2/14/06 CS 5633 Analysis of Algorithms 7

.-“;.,' 9 Calculating expectation
E[T(n)]=E|2 ”2)(T(k)+®(n))J
k=[n/2]

Take expectations of both sides.

2/14/06 CS 5633 Analysis of Algorithms

uuuuuuuuuuuuu

'!':,-‘ Calculating expectation

E[T(n)]=E|2 ZX (T(k)+6(n))
k2]

LZ (T (k) +0(n))]

Linearity of expectation.

2/14/06 CS 5633 Analysis of Algorithms

'!':,-‘ Calculating expectation

E[T(n)]=E|2 /i){,\, (T(k)+0(n))
k=[n/2]

~2 § Blx, (ro + o)
k:Ln/ZJ

=2 2 E[Xx,] E[T(k)+©(n)]
k:Ln/ZJ

Independence of X, from other random
choices.

2/14/06 CS 5633 Analysis of Algorithms 10

'!-:,‘ Calculating expectation

E[T(n)]=E|2 i){ (T(k)+6(n))
kL2

=2 ZE (T (k) +©(n))]
k=[n/2]

=2 Z]: E[Xx,] E[T(k)+©(n)]

k=[n/2]
; LZ?[T(]C)] = Z®<n>

Linearity of expectation; £[.X,| = 1/n.

2/14/06 CS 5633 Analysis of Algorithms

uuuuuuuuuuuuu

."!;-,-‘ Calculating expectation
E[T(n)]=E|2 Z' X, (T(k)+©(n))
A

=2 S EX, (T(k) + O(n)]

L/l 2

=2 ZE[XA, -E[T(k)+O(n)]
k=|n ZJ

== Z E[T (k)] +2 Z@(n)

n - =[n ZJ ny =[n ZJ

; Z E[T()]+©(n) Arithmetic series
k=|n ZJ
2/14/06 CS 5633 Analysis of Algorithms 12

uuuuuuuuuuuuu

.-!‘:-,-‘ Hairy recurrence

(But not quite as hairy as the quicksort one.)

E[T(n)]= ZE T(k)]+©(n)
k= |n/2]
Prove: E[7(n)] < cn for constant ¢ > 0.

* The constant ¢ can be chosen large enough
so that £[7(n)] < cn for the base cases.

Use fact: Zk = *”2 (exercise).
k=|n/2]

2/14/06 CS 5633 Analysis of Algorithms

uuuuuuuuuuuuu

3-;,-‘ Substitution method

-1
E[T(n)]< ch +0(n)
= |n/2]

Substitute inductive hypothesis.

2/14/06 CS 5633 Analysis of Algorithms 14

uuuuuuuuuuuuu

:'i:-,-‘ Substitution method

E[T(n)]< 2 ch +0O(n)
k= |n/2]
< 2;@}12) + O(n)
Use fact.

2/14/06 CS 5633 Analysis of Algorithms

uuuuuuuuuuuuu

:'i:-,-‘ Substitution method

E[T(n)]<2 Z ck +®(n)
k=|n/2]

C(gnz) + O(n)
=cn— (‘f - @(n))

S

IA
E l\-)

Express as desired — residual.

2/14/06 CS 5633 Analysis of Algorithms 16

uuuuuuuuuuuuu

.-"‘;-,a Substitution method

—1
E[T(n)]<2 ch +0O(n)
k=|n/2]

< 2};@112) +0O(n)
=cn— (Céf - @(n)j

<cn,

S

if ¢ is chosen large enough so
that cn/4 dominates the O(n).

2/14/06 CS 5633 Analysis of Algorithms 17

uuuuuuuuuuuuu

. order-statistic selection

* Works fast: linear expected time.
* Excellent algorithm in practice.
* But, the worst case is very bad: ©(n?).

Q. Is there an algorithm that runs in linear
time in the worst case?

A. Yes, due to Blum, Floyd, Pratt, Rivest,
and Tarjan [1973].

IDpEA: Generate a good pivot recursively.

2/14/06 CS 5633 Analysis of Algorithms 18

uuuuuuuuuuuuu

oy statistics

SELECT(Z, 1)

1. Divide the n elements into groups of 5. Find
the median of each 5-element group by rote.

2. Recursively SELECT the median x of the [7/5]
group medians to be the pivot.

3. Partition around the pivot x. Let & = rank(x).)
4.if i =k then return x

elseif i <k Same as
then recursively SELECT the ith > RAND-
smallest element in the lower part SELECT

else recursively SELECT the (i—k)th
smallest element in the upper part)

2/14/06 CS 5633 Analysis of Algorithms 19

uuuuuuuuuuuuu

:'-:";-,a Choosing the pivot

2/14/06 CS 5633 Analysis of Algorithms 20

uuuuuuuuuuuuu

'F:,-‘ Choosing the pivot

uuuuuuuuuuuuu

'F:,-‘ Choosing the pivot

e
e
e
e

1. Divide the » elements into groups of 5. Find lesser
the median of each 5-element group by rote. I

@ e ¢ e ¢ ¢ ¢ o o
e @ @ e ¢ ¢ ¢ o o
e e @ e ¢ ¢ ¢ o o
e e ¢ e ¢ ¢ ¢ o o
e 6 o ¢ ¢ o o o
1. Divide the n elements into groups of 5.
2/14/06 CS 5633 Analysis of Algorithms 21
“':,-‘ Choosing the pivot
Q@
Q@
X Q@
Q@

1. Divide the » elements into groups of 5. Find /esser
the median of each 5-element group by rote.

2. Recursively SELECT the median x of the | 7/5]
group medians to be the pivot. greater

2/14/06 CS 5633 Analysis of Algorithms 23

greater
2/14/06 CS 5633 Analysis of Algorithms 22
— .
~ - Analysis
|
]
x L
]

At least half the group medians are < x, which fesser
is at least | Ln/SJg/ﬂ =Ln/10] group medians. I

greater
2/14/06 CS 5633 Analysis of Algorithms 24

uuuuuuuuuuuuu

.'! o Analysis (Assume all elements are distinct.)

At least half the group medians are < x, which fesser
is at least | | 7/5 Jg/ﬂ =1 1/10 group medians.
* Therefore, at least 3 | n/10] elements are < x.

greater
2/14/06 CS 5633 Analysis of Algorithms 25

uuuuuuuuuuuuu

.'! o AnalySiS (Assume all elements are distinct.)

At least half the group medians are < x, which fesser
is at least | Ln/SJg/ﬂ =1 n/10 group medians.
e Therefore, at least 3 | n/10] elements are < x.

« Similarly, at least 3| /10 | elements are > x. greater
2/14/06 CS 5633 Analysis of Algorithms 26

uuuuuuuuuuuuu

_'! o Analysis (Assume all elements are distinct.)

Need “at most” for worst-case runtime

« At least 3| #/10 | elements are < x
—/at most 7-3| 1/10 | elements are > x

« At least 3| 7/10 | elements are > x
— at most 7-3| 7/10 | elements are < x

* The recursive call to SELECT in Step 4 is
executed recursively on 7-3| 1/10] elements.

2/14/06 CS 5633 Analysis of Algorithms 27

uuuuuuuuuuuuu

_'! o Analysis (Assume all elements are distinct.)

« Use fact that | a/b] > ((a-(b-1))/b (page 51)

e n-31.n/10] < n-3-(n-9)/10 = (101 -3n +27)/10
<7n/10 + 2

* The recursive call to SELECT in Step 4 is

executed recursively on at most 77/10+2
elements.

2/14/06 CS 5633 Analysis of Algorithms 28

"::‘-i Developing the recurrence

T(n) SELECT(, n)

1. Divide the # elements into groups of 5. Find
®(n) the median of each 5-element group by rote.
2. Recursively SELECT the median x of the [/5 |
I(n/5) { group medians to be the pivot.

®(n) 3. Partition around the pivot x. Let & = rank(x).
4.if i =k then return x
elseif i <k
then recursively SELECT the ith
I(7n/10 smallest e%/ement in the lower part
+2) else recursively SELECT the (i—k)th
smallest element in the upper part

2/14/06 CS 5633 Analysis of Algorithms 29

"::‘-i Solving the recurrence

1 j+T(7 j+dn

T(n)y=T|—n —n+2
5 10

Substitution: 7(n) < lcn + llcn +2c+dn
TI(n)<cn

=—cn+2c+dn
10

= cn—(lcn—ZC—dnj
10

<cn,

if ¢ is chosen large enough to handle dn

2/14/06 CS 5633 Analysis of Algorithms 30

=31 Conclusions

AAN]

« Since the work at each level of recursion is
basically a constant fraction (9/10) smaller,
the work per level is a geometric series
dominated by the linear work at the root.

* In practice, this algorithm runs slowly,
because the constant in front of 7 1s large.

* The randomized algorithm is far more
practical.

Exercise: Try to divide into groups of 3 or 7.

2/14/06 CS 5633 Analysis of Algorithms 31

