.............

— CS 5633 -- Spring 2005

ALGORITHMS

Recurrences and Divide & Conquer

Carola Wenk
Slides courtesy of Charles Leiserson with small
changes by Carola Wenk
1/26/06 CS 5633 Analysis of Algorithms 1

.............

e
Y ~

1/26/06

Merge sort

MERGE-SORT A1 .. n]|
1. If n =1, done.
2. Recursively sort A[1. .[n/2]]
and A[[n/2H1..n].
3. “Merge” the 2 sorted lists.

Key subroutine: MERGE

CS 5633 Analysis of Algorithms

.............

."!\;“;‘ Merging two sorted arrays
20 12
13 11
7 9

2 1

1/26/06 CS 5633 Analysis of Algorithms 3

.............

s i
20 12
13 11
7 9
*P

1

1/26/06

Merging two sorted arrays

CS 5633 Analysis of Algorithms

= & Merging two sorted arrays = & Merging two sorted arrays
20 12 20 12 20 12 20 12
13 11 13 11 13 11 13 11
7 9 7 9 7 9 7 9
2 @ 2 2 @ @
1 1 2
1/26/06 CS 5633 Analysis of Algorithms 5 1/26/06 CS 5633 Analysis of Algorithms
= . Merging two sorted arrays =+~ Merging two sorted arrays
20 12 20 12 20 12 20 12 20 12 20 12
13 11 13 11 13 11 13 11 13 11 13 11
7 9 7 9 7 9 7 9 7 9 9
20| Q@ 2®|Q
1 2 1 2 7
1/26/06 CS 5633 Analysis of Algorithms 7 1/26/06 CS 5633 Analysis of Algorithms

“ <" Merging two sorted arrays

20 12
13 11
7 9

P

1/26/06

20 12
13 11
7 9

R

20 12
13 11
9

20 12
13 11
9

CS 5633 Analysis of Algorithms

“ <" Merging two sorted arrays

20 12
13 11
7 9

P

1/26/06

20 12
13 11
7 9

R

20 12
13 11
9

20 12
13 11

CS 5633 Analysis of Algorithms

. . Merging two sorted arrays

20 12
13 11
7 9

P

1/26/06

20 12
13 11
7 9

X

20 12
13 11
9

20 12
13 11

CS 5633 Analysis of Algorithms

20 12
13 11

. . Merging two sorted arrays

20 12
13 11
7 9

'

1/26/06

20 12
13 11
7 9

R

20 12
13 11
9

20 12
13 11

CS 5633 Analysis of Algorithms

20 12
13

11

:“— - Merging two sorted arrays

;__

|
S

Merging two sorted arrays

20 12 20 12 20 12 20 12 20 12 20 12
13 11 13 11 13 11 13 11 13 13
790 7 9 9 ©)
1 2 7 9 11
1/26/06 CS 5633 Analysis of Algorithms 13

:“— " Merging two sorted arrays

20 12 20 12 20 12 20 12 20 12 20
13 11 13 11 13 11 13 11 13 13

7 9 7 9 9

PIR

1 2 7 9 11 12

Time dn = ©(n) to merge a total
of n elements (linear time).

1/26/06 CS 5633 Analysis of Algorithms 15

20 12 | 20 12 | 20 12 | 20 12 | 20 12 || 20
13 11) 13 11 | 13 11 | 13 11 | 13 13
79 79 9
PIS
1 2 7 9 11 12
1/26/06 CS 5633 Analysis of Algorithms 14
o ' Analyzing merge sort
T(n) MERGE-SORT A[] . . 1]
d, 1. If n =1, done.
2T(n/2)| 2. Recursively sort A[1 ..n/2]]
and A[[n/2H1..n].
dn 3. “Merge” the 2 sorted lists
Sloppiness: Should be 7([n/21) + T(Ln/2]),
but it turns out not to matter asymptotically.
1/26/06 CS 5633 Analysis of Algorithms 16

~ <~ Recurrence for merge sort

d,ifn=1;
T(n) =)
2T(n/2) +dnifn>1.

« Later we shall often omit stating the base
case when 7(n) = ©(1) for sufficiently
small 7, but only when it has no effect on
the asymptotic solution to the recurrence.

* But what does 7(n) solve to? lL.e., is it
O(n) or O(n?) or O(n?) or ...?

1/26/06 CS 5633 Analysis of Algorithms 17

g=5 The divide-and-conquer
~7 design paradigm

1. Divide the problem (instance)
into subproblems.

2. Congquer the subproblems by
solving them recursively.

3. Combine subproblem solutions.

1/26/06 CS 5633 Analysis of Algorithms 18

.-‘MJ Example: merge sort

1. Divide: Trivial.
2. Congquer: Recursively sort 2 subarrays.

3. Combine: Linear-time merge.

T(n)=2T(n/2) + &Xn)

\
subproblems work dividing

subproblem size

1/26/06 CS 5633 Analysis of Algorithms 19

and combining

.';“J Binary search

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9
3 5 7 8 9 12 15

1/26/06 CS 5633 Analysis of Algorithms 20

o ' Binary search

Find an element in a sorted array:

1. Divide: Check middle element.
2. Congquer: Recursively search | subarray.
3. Combine: Trivial.

Example: Find 9
3 5 7 8 9 12 15

1/26/06 CS 5633 Analysis of Algorithms 21

“— - Binary search

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conquer: Recursively search | subarray.
3. Combine: Trivial.

Example: Find 9
35 7 8 9 12 15

1/26/06 CS 5633 Analysis of Algorithms 22

. ' Binary search

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.

3. Combine: Trivial.
Example: Find 9
3 5 7 8 9 12 15

1/26/06 CS 5633 Analysis of Algorithms 23

. ' Binary search

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9
35 7 819 12 15

1/26/06 CS 5633 Analysis of Algorithms 24

uuuuuuuuuuuuu

_-— Binary search

Find an element in a sorted array:

1. Divide: Check middle element.
2. Congquer: Recursively search | subarray.
3. Combine: Trivial.

Example: Find 9
35 7 8 .9 12 15

1/26/06 CS 5633 Analysis of Algorithms 25

uuuuuuuuuuuuu

_— X Recurrence for binary search
T(n) =1 T(n/2) + ©(1)

\
subproblems work dividing

subproblem size and combining

1/26/06 CS 5633 Analysis of Algorithms 26

uuuuuuuuuuuuu

S~ Recurrence for merge sort

oo [eq) ifn=1;
()= {2T(n/2) +Om) ifn>1.

* How do we solve 7(n)? L.e., how do we
find out if it is O(n) or O(n?) or ...?

1/26/06 CS 5633 Analysis of Algorithms 27

uuuuuuuuuuuuu

e ' Recursion tree

Solve 7(n) = 2T(n/2) + dn, where d > 0 is constant.

1/26/06 CS 5633 Analysis of Algorithms 28

uuuuuuuuuuuuu

;!ﬂ:',-'- Recursion tree

Solve 7(n) = 27(n/2) + dn, where d > 0 is constant.

T(n)

1/26/06 CS 5633 Analysis of Algorithms 29

uuuuuuuuuuuuu

;!ﬂ:',-'- Recursion tree

Solve 7(n) = 27(n/2) + dn, where d > 0 1s constant.
dn
RN
T(n/2) T(n/2)

1/26/06 CS 5633 Analysis of Algorithms 30

uuuuuuuuuuuuu

;i:',-'- Recursion tree

Solve 7(n) =2T7(n/2) + dn, where d > 0 is constant.

dn

/ \
dan/2 dn/2
/ AN /7 N\

T(n/4) Tm/4) Tn/4) T(n/4)

1/26/06 CS 5633 Analysis of Algorithms 31

uuuuuuuuuuuuu

;i:',-'- Recursion tree

Solve 7(n) = 2T(n/2) + dn, where d > 0 is constant.
dn

/ \
dn/2 dan/2
/ AN VAN

dn/4 dn/4 dn/4 dn/4
/

@(/1)

1/26/06 CS 5633 Analysis of Algorithms 32

.............

H‘,‘ Recursion tree

Solve 7(n) = 27(n/2) + dn, where d > 0 1s constant.

dn

T
dn/2 dn/2
- /N /N
h=logn g4 gua dnd dn/d
/

®(/1)

1/26/06 CS 5633 Analysis of Algorithms 33

.............

H‘,‘ Recursion tree
Solve 7(n) = 27(n/2) + dn, where d > 0 1s constant.
dn dn

/ \
dan/2 dan/2
/ AN /7 N\

h=logn g4 gwa dwd dn/d
/

@(/1)

1/26/06 CS 5633 Analysis of Algorithms 34

.............

H‘,‘ Recursion tree

Solve 7(n) =2T7(n/2) + dn, where d > 0 is constant.

/ \
dn/z dn/2 """"""""""" dn
/ AN VRN

h=logn ;.4 dn/d dn/d dn/4
/

@(/1)

1/26/06 CS 5633 Analysis of Algorithms 35

.............

H‘,‘ Recursion tree

Solve 7(n) = 2T(n/2) + dn, where d > 0 is constant.

/ \
dn/z dn/Z """"""""""" dn
VRN VRN

h=logn ;4 dn/4d dn/4 dn/4 - dn
/

@(/1)

1/26/06 CS 5633 Analysis of Algorithms 36

uuuuuuuuuuuuu

o ' Recursion tree

Solve 7(n) = 27(n/2) + dn, where d > 0 1s constant.

/ ™~
dn/z dn/Z """"""""""" dn
7N VRN

h=logn g4 gua dn/d dn/4d - dn
/

o) (#eaves=n] o(n)

1/26/06 CS 5633 Analysis of Algorithms 37

uuuuuuuuuuuuu

_— Y Recursion tree

Solve 7(n) = 27(n/2) + dn, where d > 0 1s constant.

/ ™~
dn/2 a’n/Z """"""""""" dn
VRN VRN

h=logn dn/4 dn/4 dn/4 dn/4 — dn
/

O(1) - Hleaves —m) o)

Total ®(n log n)

1/26/06 CS 5633 Analysis of Algorithms 38

uuuuuuuuuuuuu

o Y Conclusions

* Merge sort runs in ®(n log) time.
* O(n log n) grows more slowly than O(»?).

* Therefore, merge sort asymptotically beats
insertion sort in the worst case.

* In practice, merge sort beats insertion sort
for n > 30 or so. (Why not earlier?)

1/26/06 CS 5633 Analysis of Algorithms 39

uuuuuuuuuuuuu

e ' Recursion-tree method

* A recursion tree models the costs (time) of a
recursive execution of an algorithm.

* The recursion-tree method can be unreliable,
just like any method that uses ellipses (...).

* It is good for generating guesses of what the
runtime could be.

But: Need to verify that the guess is right.
— Induction (substitution method)

1/26/06 CS 5633 Analysis of Algorithms 40

:,nl Substitution method

The most general method to solve a recurrence
(prove O and Q) separately):

1. Guess the form of the solution:
(e.g. using recursion trees, or expansion)
2. Verify by induction (inductive step).
3. Solve for O-constants 7, and ¢ (base case of
induction)

1/26/06 CS 5633 Analysis of Algorithms 41

_ The divide-and-conquer
design paradigm

1. Divide the problem (instance) into
subproblems.

a subproblems, each of size n/b

2. Congquer the subproblems by
solving them recursively.

3. Combine subproblem solutions.
Runtime s f(n)

1/26/06 CS 5633 Analysis of Algorithms 42

“— ' The master method

The master method applies to recurrences of
the form

T(n)=aT(n/b)+ f(n),

where ¢ > 1, 5> 1, and f 1s asymptotically
positive.

1/26/06 CS 5633 Analysis of Algorithms 43

:‘— ' Three common cases

Compare f(n) with n'o¢v:
1. f(n)= O(n'2*) for some constant & > 0.

* /(n) grows polynomially slower than 7'°2
(by an »* factor).

Solution: T(n) = O(n'o#?)

2. f(n)= O(n'o271g"n) for some constant & > 0.
* f(n) and n'°2»* grow at similar rates.
Solution: T(n) = O(n'°2* 1gk1n) .

1/26/06 CS 5633 Analysis of Algorithms 44

H\,‘ Three common cases (cont.)

Compare f(7) with n'°z;

3. f(n)=Q(n'"2" %) for some constant & > 0.

* /(n) grows polynomially faster than »'°2¢ (by
an n° factor),

and f(n) satisfies the regularity condition that
af(n/b) < cf(n) for some constant ¢ < 1.

Solution: T(n)=0O(f(n)).

1/26/06 CS 5633 Analysis of Algorithms 45

'ﬂ Examples

Ex. T(n)=4T(n/2) +n
a=4,b=2= nlt*=p? f(n)=n.
CASE 1: f(n) = O(n’~°) forg = 1.
. T(n) = O(n2).

Ex. T(n) =4T(n/2) + n?
a=4,b=2= nlt=p? f(n) = n.
CASE 2: /(n) = O(n’1g"n), that is, k = 0.
. T(n) = O(n’lgn).

1/26/06 CS 5633 Analysis of Algorithms 46

““-‘ Examples

Ex. T(n) =4T(n/2) + n’
a=4,b=2= n=pn? f(n) = n.
CASE 3: f(n) = Q(n” %) fore =1
and 4(cn/2)? < cn’ (reg. cond.) for ¢ = 1/2.
. T(n) = O(3).

Ex. T(n) =4T(n/2) + n?/1gn
a=4,b=2= n'=p? f(n) = n?/lgn.
Master method does not apply. In particular,
for every constant € > 0, we have n* = w(lgn).

1/26/06 CS 5633 Analysis of Algorithms 47

H\,‘ Master theorem (summary)
T(n) = aT(n/b) + f(n)
CASE 1: f(n) = O(n'ogbe—%)
= T(n) = O(n'oer?)

CASE 2: f(n) = ©(n'°2v¢ 1gkn)
= T(n) = O(n'oe¢ 1gk*1p) |
CASE 3: f(n) = Q(n'°= "¢y and a f(n/b) < ¢ f(n)
= T(n) = O(f(n)) .
Merge sort: a =2,b =2 = nloei =y
= CASE2 (k=0) = T(n)=0O(nlgn).

1/26/06 CS 5633 Analysis of Algorithms 48

