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Recurrences and Divide & Conquer

Carola Wenk
Slides courtesy of Charles Leiserson with small
changes by Carola Wenk
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Merge sort

MERGE-SORT A1 .. n]|
1. If n =1, done.
2. Recursively sort A[ 1. .[n/2]]
and A[ [n/2H1..n].
3. “Merge” the 2 sorted lists.

Key subroutine: MERGE
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."!\;“;‘ Merging two sorted arrays
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Merging two sorted arrays
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20 12 20 12 20 12 20 12
13 11 13 11 13 11 13 11
7 9 7 9 7 9 7 9
2 @ 2 2 @ @
1 1 2
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= . Merging two sorted arrays =+~ Merging two sorted arrays
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:“— - Merging two sorted arrays
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Merging two sorted arrays

20 12 20 12 20 12 20 12 20 12 20 12
13 11 13 11 13 11 13 11 13 13
790 7 9 9 ©)
1 2 7 9 11
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:“— " Merging two sorted arrays

20 12 20 12 20 12 20 12 20 12 20
13 11 13 11 13 11 13 11 13 13

7 9 7 9 9

PIR

1 2 7 9 11 12

Time dn = ©(n) to merge a total
of n elements (linear time).
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20 12 | 20 12 | 20 12 | 20 12 | 20 12 || 20
13 11 ) 13 11 | 13 11 | 13 11 | 13 13
79 79 9
PIS
1 2 7 9 11 12
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o ' Analyzing merge sort
T(n) MERGE-SORT A[ ] . . 1]
d, 1. If n =1, done.
2T(n/2)| 2. Recursively sort A[ 1 ..n/2]]
and A[ [n/2H1..n].
dn 3. “Merge” the 2 sorted lists
Sloppiness: Should be 7([n/21) + T(Ln/2]),
but it turns out not to matter asymptotically.
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~ <~ Recurrence for merge sort

d,ifn=1;
T(n) = )
2T(n/2) +dnifn>1.

« Later we shall often omit stating the base
case when 7(n) = ©(1) for sufficiently
small 7, but only when it has no effect on
the asymptotic solution to the recurrence.

* But what does 7(n) solve to? lL.e., is it
O(n) or O(n?) or O(n?) or ...?
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g=5 The divide-and-conquer
~7 design paradigm

1. Divide the problem (instance)
into subproblems.

2. Congquer the subproblems by
solving them recursively.

3. Combine subproblem solutions.
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.-‘MJ Example: merge sort

1. Divide: Trivial.
2. Congquer: Recursively sort 2 subarrays.

3. Combine: Linear-time merge.

T(n)=2T(n/2) + &Xn)

\
# subproblems work dividing

subproblem size
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and combining

.';“J Binary search

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9
3 5 7 8 9 12 15
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o ' Binary search

Find an element in a sorted array:

1. Divide: Check middle element.
2. Congquer: Recursively search | subarray.
3. Combine: Trivial.

Example: Find 9
3 5 7 8 9 12 15
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“— - Binary search

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conquer: Recursively search | subarray.
3. Combine: Trivial.

Example: Find 9
35 7 8 9 12 15
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. ' Binary search

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.

3. Combine: Trivial.
Example: Find 9
3 5 7 8 9 12 15
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. ' Binary search

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9
35 7 819 12 15
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_-— Binary search

Find an element in a sorted array:

1. Divide: Check middle element.
2. Congquer: Recursively search | subarray.
3. Combine: Trivial.

Example: Find 9
35 7 8 .9 12 15
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_— X Recurrence for binary search
T(n) =1 T(n/2) + ©(1)

\
# subproblems work dividing

subproblem size and combining
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S~ Recurrence for merge sort

oo [eq) ifn=1;
()= {2T(n/2) +Om) ifn>1.

* How do we solve 7(n)? L.e., how do we
find out if it is O(n) or O(n?) or ...?
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e ' Recursion tree

Solve 7(n) = 2T(n/2) + dn, where d > 0 is constant.
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;!ﬂ:',-'- Recursion tree

Solve 7(n) = 27(n/2) + dn, where d > 0 is constant.

T(n)
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;!ﬂ:',-'- Recursion tree

Solve 7(n) = 27(n/2) + dn, where d > 0 1s constant.
dn
RN
T(n/2) T(n/2)
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;i:',-'- Recursion tree

Solve 7(n) =2T7(n/2) + dn, where d > 0 is constant.

dn

/ \
dan/2 dn/2
/ AN /7 N\

T(n/4) Tm/4) Tn/4) T(n/4)
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;i:',-'- Recursion tree

Solve 7(n) = 2T(n/2) + dn, where d > 0 is constant.
dn

/ \
dn/2 dan/2
/ AN VAN

dn/4 dn/4 dn/4 dn/4
/

@(/1)
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H‘,‘ Recursion tree

Solve 7(n) = 27(n/2) + dn, where d > 0 1s constant.

dn

T
dn/2 dn/2
- /N /N
h=logn g4 gua  dnd dn/d
/

®(/1)
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H‘,‘ Recursion tree
Solve 7(n) = 27(n/2) + dn, where d > 0 1s constant.
dn dn

/ \
dan/2 dan/2
/ AN /7 N\

h=logn g4 gwa  dwd  dn/d
/

@(/1)
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H‘,‘ Recursion tree

Solve 7(n) =2T7(n/2) + dn, where d > 0 is constant.

/ \
dn/z dn/2 """"""""""" dn
/ AN VRN

h=logn ;.4 dn/d  dn/d dn/4
/

@(/1)
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H‘,‘ Recursion tree

Solve 7(n) = 2T(n/2) + dn, where d > 0 is constant.

/ \
dn/z dn/Z """"""""""" dn
VRN VRN

h=logn ;4 dn/4d  dn/4 dn/4 - dn
/

@(/1)
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o ' Recursion tree

Solve 7(n) = 27(n/2) + dn, where d > 0 1s constant.

/ ™~
dn/z dn/Z """"""""""" dn
7N VRN

h=logn g4 gua  dn/d dn/4d - dn
/

o) (#eaves=n] o(n)
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_— Y Recursion tree

Solve 7(n) = 27(n/2) + dn, where d > 0 1s constant.

/ ™~
dn/2 a’n/Z """"""""""" dn
VRN VRN

h=logn dn/4 dn/4 dn/4 dn/4 — dn
/

O(1) - Hleaves —m ) o)

Total ®(n log n)

1/26/06 CS 5633 Analysis of Algorithms 38

uuuuuuuuuuuuu

o Y Conclusions

* Merge sort runs in ®(n log ) time.
* O(n log n) grows more slowly than O(»?).

* Therefore, merge sort asymptotically beats
insertion sort in the worst case.

* In practice, merge sort beats insertion sort
for n > 30 or so. (Why not earlier?)
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e ' Recursion-tree method

* A recursion tree models the costs (time) of a
recursive execution of an algorithm.

* The recursion-tree method can be unreliable,
just like any method that uses ellipses (...).

* It is good for generating guesses of what the
runtime could be.

But: Need to verify that the guess is right.
— Induction (substitution method)
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:,nl Substitution method

The most general method to solve a recurrence
(prove O and Q) separately):

1. Guess the form of the solution:
(e.g. using recursion trees, or expansion)
2. Verify by induction (inductive step).
3. Solve for O-constants 7, and ¢ (base case of
induction)
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_ The divide-and-conquer
design paradigm

1. Divide the problem (instance) into
subproblems.

a subproblems, each of size n/b

2. Congquer the subproblems by
solving them recursively.

3. Combine subproblem solutions.
Runtime s f(n)
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“— ' The master method

The master method applies to recurrences of
the form

T(n)=aT(n/b)+ f(n),

where ¢ > 1, 5> 1, and f 1s asymptotically
positive.
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:‘— ' Three common cases

Compare f(n) with n'o¢v:
1. f(n)= O(n'2* ) for some constant & > 0.

* /(n) grows polynomially slower than 7'°2
(by an »* factor).

Solution: T(n) = O(n'o#?)

2. f(n)= O(n'o271g"n) for some constant & > 0.
* f(n) and n'°2»* grow at similar rates.
Solution: T(n) = O(n'°2* 1gk1n) .
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H\,‘ Three common cases (cont.)

Compare f(7) with n'°z;

3. f(n)=Q(n'"2" %) for some constant & > 0.

* /(n) grows polynomially faster than »'°2¢ (by
an n° factor),

and f(n) satisfies the regularity condition that
af(n/b) < cf(n) for some constant ¢ < 1.

Solution: T(n)=0O(f(n)).
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'ﬂ Examples

Ex. T(n)=4T(n/2) +n
a=4,b=2= nlt*=p? f(n)=n.
CASE 1: f(n) = O(n’~°) forg = 1.
. T(n) = O(n2).

Ex. T(n) =4T(n/2) + n?
a=4,b=2= nlt=p? f(n) = n.
CASE 2: /(n) = O(n’1g"n), that is, k = 0.
. T(n) = O(n’lgn).
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““-‘ Examples

Ex. T(n) =4T(n/2) + n’
a=4,b=2= n=pn? f(n) = n.
CASE 3: f(n) = Q(n” %) fore =1
and 4(cn/2)? < cn’ (reg. cond.) for ¢ = 1/2.
. T(n) = O(3).

Ex. T(n) =4T(n/2) + n?/1gn
a=4,b=2= n'=p? f(n) = n?/lgn.
Master method does not apply. In particular,
for every constant € > 0, we have n* = w(lgn).
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H\,‘ Master theorem (summary)
T(n) = aT(n/b) + f(n)
CASE 1: f(n) = O(n'ogbe—%)
= T(n) = O(n'oer?)

CASE 2: f(n) = ©(n'°2v¢ 1gkn)
= T(n) = O(n'oe¢ 1gk*1p) |
CASE 3: f(n) = Q(n'°= "¢y and a f(n/b) < ¢ f(n)
= T(n) = O(f(n)) .
Merge sort: a =2,b =2 = nloei =y
= CASE2 (k=0) = T(n)=0O(nlgn).
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