Schedule (subject to change)

Date	Material
Tu 1/17	Analyzing algorithms (Ch. 2.2)
	Best case and worst case runtimes; insertion sort, incremental algorithm
Th 1/19	Asymptotic notation (Ch. 3, Ch. A)
,	$O, \Omega, \Theta, o, \text{ limit-theorem}; \text{ runtime for code-snippets}$
	Homework 1 assigned
Tu 1/24	Heapsort (Ch. 6)
	Abstract data types (ADT), priority queue, heap, heapsort, linear-time buildheap
Th 1/26	Divide-and-conquer (Ch. 2.3) and recurrences (Ch. 4.1, 4.2)
	Divide-and-conquer, merge sort, binary search; Runtime recurrences. Solving re-
	currences with recursion tree; solving the recurrence with the substitution method
	(induction)
	$Homework\ 1\ due;\ homework\ 2\ assigned$
Tu 1/31	Master theorem (Ch. 4.3), more divide-and-conquer (Ch. 31.6 pages 879-
	880; Ch. 30 pages 822–824; 28.2)
	Use of master theorem to solve recurrences. Repeated squaring for exponentiation,
TD1 0 /0	Fibonacci numbers, polynomial multiplication, Strassen's matrix multiplication.
Th $2/2$	Randomized algorithms (Ch. 5.1-5.3), random variables and expected
	values (Ch. C.3)
	Hiring problem; Expected runtime analysis. Random variables, expected value. Homework 2 due; homework 3 assigned
Tu 2/7	Quicksort (Ch. 7.1–7.4)
1 4 2/1	Quicksort, best-case and worst-case runtimes, randomized quicksort.
Th 2/9	Sorting (Ch. 8.1, 8.2, 8.3)
111 -/ 0	Decision trees, lower $\Omega(n \log n)$ bound for comparison sorts, counting sort, radix sort
	Homework 3 due; homework 4 assigned
Tu 2/14	Order statistics (Ch. 9)
,	Order statistics (find i-th smallest element); Randomized selection, deterministic
	selection in linear time
Th 2/16	Hashing (Ch. 11; not 11.3.3 and not 11.5)
	Direct-address tables, chaining, open addressing with linear probing, quadratic prob-
	ing, double hashing. Hash functions
	Homework 4 due
Tu 2/21	Test 1
	Material until 2/14 (inclusive)
Th 2/23	Red-black trees (Ch. 13.1, 13.2, 13.3)
	Red-black tree property, rotations, insertion; abstract data types, ADT dictionary
	Homework 5 assigned
Tu 2/28	B-trees (Ch. 18.1, 18.2)
m1 c /c	k-ary search trees, B-tree def., height, insertion
Th $3/2$	Augmenting Data Structures (Ch. 14)
	Augmenting red-black trees; Dynamic order statistics, interval trees
	Homework 5 due; homework 6 assigned

Date	Material
Tu 3/7	Range Trees
,	Range trees, in 2 dimensions and in d dimensions; preprocessing time, query time.
Th 3/9	Dynamic programming (Ch. 15.2, 15.3, 15.4)
	Fibonacci, binomial coefficient, LCS: fill table, then construct solution from the
	table.
	Homework 6 due; homework 7 assigned
Tu 3/21	Dynamic programming (Ch. 15.2, 15.3, 15.4)
	Matrix chain multiplication; general outline of dynamic programming: Optimal substructure (recurrence), overlapping subproblems, fill table bottom-up or by memoization.
Th 3/23	Greedy algorithms (Ch. 16.2 pages 380 middle – 384; problem 16-1 on
111 0/20	page 402; Ch. 16.3)
	Greedy algorithms (greedy-choice property, optimal substructure). Making change,
	fractional knapsack. Huffman codes
	Homework 7 due; homework 8 assigned
Tu 3/28	Amortized analysis (Ch. 17.1, 17.2, 17.4)
,	Aggregate analysis (total runtime of n operations), accounting method (prepay for
	later operations); binary counter, dynamic tables
Th 3/30	Union-Find (Ch. 21.1, 21.2, 21.3)
,	Operations, list implementation, tree implementation, union-by-weight / union-by
	rank, path compression. Ackermann function, and inverse Ackermann function α .
	Homework 8 due; homework 9 assigned
Tu 4/4	Elementary Graph Algorithms (Ch. 22.1–22.4)
	Representations of graphs, breadth-first search (BFS), depth-first search (DFS),
	topological sort
Th $4/6$	Minimum Spanning Trees (Ch. 23)
	Prim (grows single tree), Kruskal (grows forest; uses union/find data structure)
	Homework 9 due
Tu 4/11	Test 2
	Material from $2/23$ until $3/30$ (inclusive)
Th 4/13	Single-source shortest paths (Ch. 24 without 24.4)
	Optimal substructure, triangle inequality, relaxation step; Dijkstra (only for non-
	negative edge weights), predecessor tree (shortest path tree); Bellman-Ford, detec-
	tion of negative-weight cycles; Shortest paths in a DAG
	Homework 10 assigned
Tu 4/18	All-Pairs Shortest Paths (Ch. 25.2)
	Dynamic programming: Floyd-Warshall
Th $4/20$	Maximum Flow (Ch. 26)
	Flow networks; Max-flow min-cut, augmenting path, residual network
B 4755	Homework 10 due; homework 11 assigned
Tu 4/25	Maximum Flow (Ch. 26)
	Ford-Fulkerson, Edmonds-Karp
Th $4/27$	P and NP (Ch. 34)
TD 1/2	Decision problems, definition of classes P and NP, polynomial-time reductions
Tu 5/2	P and NP (Ch. 34)
	NP-hardness, NP-completeness; Show that problems are NP-complete by reducing
	from other problems; TSP, Clique, Independent Set, Vertex Cover, Hamilton Path,
	Hamilton Circuit
	Homework 11 due