3/23/06

7. Homework

Due Thursday 3/30/06 before class

1. Binomial coefficient (5 points)

Given n and k with $n \ge k \ge 0$, we want to compute the binomial coefficient $\binom{n}{k}$. However, we are only allowed to use additions, and no multiplications.

a) (2 points) Give a bottom-up dynamic programming algorithm to compute $\binom{n}{k}$ using the recurrence

$$\begin{pmatrix} n \\ k \end{pmatrix} = \binom{n-1}{k-1} + \binom{n-1}{k}, \text{ for } n > k > 0$$

$$\begin{pmatrix} n \\ 0 \end{pmatrix} = \binom{n}{n} = 1, \text{ for } n \ge 0$$

.

- b) (1 point) What are the runtime and the space complexity of your algorithm, expressed in n and k?
- e) (2 point) Now assume you use memoization to compute $\binom{4}{3}$ using the above recurrence. In which order do you fill the entries in the DP-table? Give the DP-table for this case and annotate each cell with a "time stamp" when it was filled.

2. LCS traceback (3 points)

Show how to perform the traceback in order to construct an LCS from the filled dynamic programming table without using the "arrows", in O(n+m) time. Justify your answer.

3. Matrix chain multiplication traceback (3 points)

Show how to perform the traceback in order to construct an optimal parenthesization for the matrix chain multiplication problem *without* using the auxiliary s-table. How much time does the traceback algorithm need? Justify your answer.

4. Saving space (5 points)

Suppose we only want to compute the length of an LCS of two strings of length m and n. This means we do not need to store the whole dynamic programming table for a later traceback.

Show how to alter the dynamic programming algorithm such that it only needs $\min(m, n) + O(1)$ space. (Notice that it is $not O(\min(m, n))$, but plain $\min(m, n)$.)

FLIP OVER TO BACK PAGE \implies

5. Intervals (8 points)

1. Let A[1..n] be an array of n integers (which can be positive, negative, or zero). An *interval* with start-point i and end-point j, $i \leq j$, consists of the numbers $A[i], \ldots, A[j]$ and the *weight* of this interval is the sum of all elements $A[i] + \ldots + A[j]$.

The problem is: Find the interval in A with maximum weight.

- (a) (2 points) Describe an algorithm for this problem that is based on the following idea: Try out all combinations of i, j with $1 \le i < j \le n$. What is the runtime of this algorithm?
- (b) Describe a dynamic programming algorithm for this problem. Proceed in the following steps:
 - i. (2 points) Develop a recurrence for the following entity: $S(j) = \max \text{ maximum of the weights of all intervals with end-point } j$.
 - ii. (1 point) Based on this recurrence describe an algorithm that computes all S(j) in a dynamic programming fashion, and afterwards determines the end-point j^* of an optimal interval.
 - iii. (2 points) Given the end-point j^* find the start-point i^* of an optimal interval by backtracking.
 - iv. (1 point) What are the runtime and the space complexity of this algorithm?