1/19/05

1. Homework Due 1/26/05 before class

1. Code snippets (6 points)

For each of the code snippets below give their Θ -runtime depending on n. Justify your answers.

(a) (2 points)
 for(i=n; i>=1; i=i/2){
 print("Awesome");
}

(b) (2 points)
 for(i=1; i<n; i=i*2){
 for(j=1; j<=i; j++){
 print("homework");
 }
}

(c) (2 points)
 for(i=1; i*i<=n; i++){
 for(j=i; j>=1; j--){
 print("assignment");
 }
}

2. Polynomial (2 points)

Let $\sum_{i=0}^{m} a_i n^i$ be a polynomial in n of degree $m \geq 0$ with coefficients $a_0, \ldots, a_m > 0$. Prove the following, using only the definition of Θ :

$$\sum_{i=0}^{m} a_i n^i \in \Theta(n^m)$$

3. O, Ω, Θ (4 points)

- (a) Use the definition of Θ to prove the following: $g_1(n) + g_2(n) \in \Theta(\max(g_1(n), g_2(n)))$
- (b) If $f(n) \in \Theta(g(n))$ and $g(n) \in \Omega(h(n))$. Which of the following is true? $f(n) \in O(h(n))$ or $f(n) \in \Omega(h(n))$ Justify your answer.

4. Big-Oh ranking (12 points)

Rank the following functions by order of growth, i.e., find an arrangement $f_1, f_2, ...$ of the functions satisfying $f_1 \in O(f_2), f_2 \in O(f_3),...$. Partition your list into equivalence classes such that f and g are in the same class if and only if $f \in \Theta(g)$. For every two functions f_i, f_j that are adjacent in your ordering, prove shortly why $f_i \in O(f_j)$ holds. And if f and g are in the same class, prove that $f \in \Theta(g)$.

$$n^2$$
, n^3 , $\log \log n$, $\log n$, 1, n^n , n , 2^n , $\log^2 n$, $n \log n$, 2^{n+1} , 3^n , \sqrt{n}

As a reminder: $\log^2 n = (\log n)^2$ and $\log \log n = \log(\log n)$. Bear in mind that in some cases it might be useful to show $f(n) \in o(g(n))$, since $o(g(n)) \subset O(g(n))$. If you try to show that $f(n) \in o(g(n))$, then it might be useful to apply the rule of l'Hôpital which states that

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f'(n)}{g'(n)}$$

if the limits exist; where f'(n) and g'(n) are the derivatives of f and g, respectively.