mEm CS 5633 -- Spring 2005

'“‘\ =3 ‘
ALGORITHMS
B-trees 11
3/3/05 CS 5633 Analysis of Algorithms 1

;’j‘!,“!‘j' B-tree insert

* There are different insertion strategies. We just cover
one of them

» Make one pass down the tree:
* The goal is to insert the new key key into a leaf
* Search where key should be inserted
* Only descend into non-full nodes:

« If a node is full, split it. Then continue
descending.

» Splitting of the root node is the only way a B-
tree grows in height

3/3/05 CS 5633 Analysis of Algorithms 2

i:',,‘!ﬂj' B-TREE-SPLIT-CHILD(x,i,))
has 2/-1 keys
* Split fullnode y into two nodes y and z of & keys

x T PN
RS
o '"'"'"""""“";I‘l“
y=cid | y=cix] 2=l
I|P|Q|R|S|T}U|VJ ||P|Q|R|-‘ [ITIUlv—\]

NERRRN RN

Iy T, Ty Ty T5 Tg Ty Ty I'T, T, T, Ts To T; T

ili_‘!‘!\""! Split root: B-TREE-SPLIT-CHILD(s, /,

* The full root node 7 is split in two.

* A new root node s 1s created

* 5 contains the median key H of 7 and has the
two halves of 7 as children

* Example below for £ =4

root[T]
N

Il ADF H L NP .I e]

VLT

Ty Ty Ty Ty Ts Tg T, Ty

© o~ B-TREE-INSERT(Tkey)

r=root[7]

if (#keys in) = 2k-1 // root r 1s full
//insert new root node:
s <— ALLOCATE-NODE()
root[7] <— s
// split old root » to be two children of new root s
B-TrEEe-SpPLIT-CHILD(S, 1 ,7)
B-TREE-INSERT-NONFULL(s,key)

else B-TREE-INSERT-NONFULL(s,ke))

3/3/05 CS 5633 Analysis of Algorithms 5

=" B-TREE-INSERT-NONFULL(x,key)
if x is a leaf then
insert key at the correct (sorted) position in x
DISK-WRITE(x)
else
find child ¢ of x which by the search tree property
should contain key
DISK-READ(¢)
if c is full then // ¢ contains 24-1 keys
B-TREE-SPLIT-CHILD(x,i,¢)
B-TREE-INSERT-NONFULL(c,k)

3/3/05 CS 5633 Analysis of Algorithms

.'fio Insert example (k=3)

w

/-// \\ '\

ACDE | |JK| |[NO| |[RSTUV||YZ

* [nsert B:

/-// \\ '\

ABCDE | |JK| |NO| |RSTUV||YZ

“ o+ Insert example (£=3) -- cont.

w

/'// \\\\
ABCDE JK| |[NO| |[RSTUV||YZ
node is full

* Insert Q:

/

ABCDE | |JK| INO||ORS||UV YZ

“ <~ Insert example (A~=3) -- cont. “ <" Insert example (£~=3) -- cont.

node is full | G P T X /-P~\
7 U~ GM TX
4BcDE | [Jk| [Nol||ors|[uv] |ryz node is full 12—\ =~ _ 7 T~
ABCDE ||JKL||NO||QORS||UV YZ
 Insert L: 5 * Insert F
e P
/ \ /. ~\
GM TX
p L+ ; LCGM TX
/ / O\l ~ \ \ // 7 \\ /’ AN \
ABCDE |[JKL|INOJ|QRS||UV] |YZ AB|DEF|JKkL|[NO||oRrS||uv]| |¥z
3/3/05 CS 5633 Analysis of Algorithms 9 3/3/05 CS 5633 Analysis of Algorithms
“ <" Runtime of B-TREE-INSERT “.<" B-trees -- Conclusion

* B-trees are balanced k-ary search trees
* O(k) runtime per node

* Path has height /2 = O(log, n)
* CPU-time: O(k log, n)

* The degree of each node is bounded from
above and below using the parameter &

* All leaves are at the same height

» Disk accesses: O(log, 1) * No rotations are needed: During insertion (or
deletion) the balance is maintained by node
splitting (or node merging)

disk accesses are more expensive than CPU time

* The tree grows (shrinks) in height only by
splitting (or merging) the root

