BEw S 5633 - Spring 2005 “ " External memory dictionary
e | i s
ALGORITHMS Task: Given a large amount of data that does
m not fit into main memory, process it into a
o ’“‘\--‘ dictionary data structure
:'“" \‘ —— * Need to minimize number of disk accesses
« With each disk read, read a whole block of
data
B-trees
* Construct a balanced search tree that uses one
disk block per tree node

» Each node needs to contain more than one key

3/3/05 CS 5633 Analysis of Algorithms 1 3/3/05 CS 5633 Analysis of Algorithms 2

“ <" Example of a 4-ary tree

w

"~ k-ary search trees

w

A k-ary search tree T is defined as follows:
For each node x of T
* x has at most & children (i.e., T is a k-ary tree)
* x stores an ordered list of pointers to its children

* x stores an ordered list of keys (1 <# keys < k-1,
and # keys > # children — 1)

« x fulfills the search tree property:

keys in subtree rooted at i-th child < i-th key <
keys in subtree rooted at (i+1)-st child




“«* Example of a 4-ary search tree

12 15 21

3/3/05 CS 5633 Analysis of Algorithms 5

"~ B-tree

A B-tree T with minimum degree & > 2 is defined
as follows:

» T is a (2k)-ary search tree

* For every internal node: #keys = #children-1

» Every node, except the root, stores at least -1 keys
(every internal non-root node has at least 4 children)

 The root must store at least one key
» All leaves have the same depth

3/3/05 CS 5633 Analysis of Algorithms 6

ALe

.-"“"'.:,‘ B-tree with A=2

w

12 15 21

Remark: This is a (2,3,4)-tree.

“ <" Height of a B-tree

Theorem: A B-tree with minimum degree & > 2
which stores 7 keys has height /2 at most
log, (n+1)/2

Proof: #nodes > 1+2+2k+2/7+. . +2)!

/ N\
/ level 1\ level 3
level 0 level 2

h-1 h
n=#keys > 1+(k-1) 22k = 1+2(k-1)- k’-ll = 21

]




e—
"~ & B-tree search

i

B-TREE-SEARCH(x,key)

i<« 1

while i<#keys of x and key > i-th key of x
do i « i+l

if i<#keys of x and key = i-th key of x
then return (x,7)

if x is a leaf
then return NIL
else ~=DISK-READ(i-th child of x)

return B-TREE-SEARCH(D,key)

3/3/05 CS 5633 Analysis of Algorithms

" B-tree search runtime

i

* O(k) per node
* Path has height /2 = O(log, n)
» CPU-time: O(k log, n)

* Disk accesses: O(log, n)

disk accesses are more expensive than CPU time

3/3/05 CS 5633 Analysis of Algorithms




