CS 5633 -- Spring 2005 =~ Flow networks

ALGORITHMS Definition. A flow network is a directed graph
G = (V, E) with two distinguished vertices: a
source s and a sink t. Each edge (u, v) € E has
a nonnegative capacity c(u, v). If (u, v) ¢ E,
then c(u, v) = 0.

Example:

Flow Networks
Carola Wenk

Slides courtesy of Charles Leiserson with
small changes by Carola Wenk

4/12/05 CS 5633 Analysis of Algorithms

il;l-n“.‘_ Flow networks ;'!‘!H,'-_ A flow on a network
Definition. A positive flow on G is a function positive capacity
p VxV— R satisfying the following: flow _ /

* Capacity constraint: For all u, v € V, 1:3
0<p(u, v) < c(u, v).
» Flow conservation: For allu € V'\ {s, t},

D pu,v)= > p(v.u)=0.

vel vel
The value of a flow is the net flow out of the Flow conservation (like Kirchoff’s current law):
source: e Flowintouis 2 + 1 = 3.
' > p(s,v)= > p(v,s). *Flowoutof uis 0+ 1 + 2 = 3.

e e _ ‘The value of this flow is 1 — 0 +2 = 3.

“ &Y The maximum-flow problem

i

Maximum-flow problem: Given a flow network
G, find a flow of maximum value on G.

The value of the maximum flow 1s 4.

4/12/05 CS 5633 Analysis of Algorithms 5

- — [
! ‘\,-‘“ Flow cancellation

i

Without loss of generality, positive flow goes
either from u to v, or from v to u, but not both.

Net flow from

1 to v in both
230 |12 i> 131 Joo casesis 1.

On the following slides the ™
(net) flow on this edge will
be the negated flow of the
other direction, so, -1.

The capacity constraint and flow conservation
are preserved by this transformation.
INTUITION: View flow as a rate, not a quantity.

4/12/05 CS 5633 Analysis of Algorithms 6

“;:‘:I_-I ~ [[[[
“.<* A notational simplification

InEA: Work with the net flow between two
vertices, rather than with the positive flow.

Definition. A (net) flow on G is a function
[VxV— R satisfying the following:
 Capacity constraint: For all u,v € V,
f(u,v) <c(u, v).
» Flow conservation: For allu € V'\ {s, t},
Z £ (u,v) =0.— One summation
7 instead of two.
* Skew symmetry: For all u,v € V,

S, v) =~ (v, u).

" Equivalence of definitions

i

Theorem. The two definitions are equivalent.

PVOOf (:>) Letf(u: V) :p(u: V) _p(V, Ll).

* Capacity constraint: Since p(u, v) < c(u, v) and
p(v, u) >0, we have f(u, v) < c(u, v).

e Flow conservation:

D Sy =D (pu.v) = p(v,u))

velV vel
= Zp(uav) _Zp(v:u)
velV velV

» Skew symmetry:
S(u, v) =p(u,v) —p(v, u)
=~ (p(v, u) - p(u, v))
- =—f(v,u).

f""‘!‘!\,!s Proof (continued) ii;!~!--" Positive flow vs. (net) flow

(<) Let

_J fu,v) ifflu,v)>0,
pu,v) = { 0 if flu, v) < 0.

* Capacity constraint: By definition, p(u, v) > 0. Since
f(u, v) <c(u,v), it follows that p(u, v) < c(u, v).
» Flow conservation: If f(u, v) > 0, then p(u, v) — p(v, u)

=/f(u,v). Iff(u,v) <0, then p(u, v) - p(v, u) = —f(v, u) : Edges with 0-
= f(u, v) by skew symmetry. Therefore, i capacity are 5
i usually omitted, :
- i although they do
2, p(e) =2 p(v) =2 /(). oamy ancgaive
ve ve ve ﬂOW!
4/12/05 CS 5633 Analysis of Algorithms 9 4/12/05 CS 5633 Analysis of Algorithms 10
if,,“!‘j' Notation ii;!~!~w"‘ Simple properties of flow
Definition. The value of a flow /, denoted by |/, ?eﬁ?a)b ~0
is given by e Zf(S) 2. f(X, NH=—f(V, X),
A 3. f(XVY, 2)=f(X,2)+f(Y, 2)if XnY=2.[]
=f(s, V). Theorem. |/ |= f(V,?).
Implicit summation notation: A set used in Proof.
an arithmetic formula represents a sum over 1Sl =S V) 3.
the elements of the set. =SV =fNsh V) L, 2

. = f(V, V{s}) 2., 3.
* Example — flow conservation: = f(V,0)+f(V, V\{s,t}) Flow conservation
fu, Vy=0forallu € V'\ {s, t}. =fVn. 0O

f""‘!‘!\,!s Flow into the sink

4/12/05 CS 5633 Analysis of Algorithms 13

.:.-.‘-““!_‘I Cuts

Definition. A cut (S, T) of a flow network G =
(V, E) is a partition of /' such that s € Sand 7 € T.
If / is a flow on G, then the flow across the cut is

S, N=Q2+2)+(=2+1-1+2)
=4

4/12/05 CS 5633 Analysis of Algorithms 14

||||||||||||||

= Another characterization of

u

~> flow value

Lemma. For any flow f'and any cut (S, 7), we

have | /] = 7(S, 7).

Proof £8.T)=£(S. 1) ~f(5.9)
£(S. 1)

1 (s, V) +f(SVs}, V)
(s, V)

/1 B

||||||||||||||

;"‘!‘!\,!ﬁ Capacity of a cut
Definition. The capacity of a cut (S, T) is c(S, 7).

S, T)=Q2+3)+0+1+2+3)
~11

-.55- UPPCr oouna on inc maximuin
flow value

Theorem. The value of any flow is bounded
above by the capacity of any cut: |f| <c(S,7) .
Proof. fl=1(S,T)

—ZZf(u,v)

ueSvel

< Z Zc(u,v)

ueSvel

=¢(S,7). O

4/12/05 CS 5633 Analysis of Algorithms 17

~ " Residual network

Definition. Let / be a flow on G = (V, E). The
residual network G,(V, E,) is the graph with
strictly positive residual capacities

Cf(ua V) - C(l/l, V) _f(ua V) > 0.
Edges in £, admit more flow.
Example:

o @D o @0

Lemma. |E/|<2|E[. O

4/12/05 CS 5633 Analysis of Algorithms 18

s . Augmenting paths

Definition. Any path from s to 7 in G,1s an aug-
menting path in G with respect to /. The flow
value can be increased along an augmenting

path p by ¢, (p) = (%gp{c 7(u,v)}.

EX.: 3:5 2:6 -5:2 22:0 2:5

\!__III-I. - [
«* Max-flow, min-cut theorem

Theorem. The following are equivalent:
1. | f|=c(S, T) for some cut (S, 7). €<= min-cut
2. fis a maximum flow. -
3. fadmits no augmenting paths.

Proof.

(/)= (2): Since | /| < ¢(S, T) for any cut (S, 7) (by
the theorem from 3 slides back), the assumption that
| /1 =c(S, T) implies that / is a maximum flow.

(2) = (3): If there were an augmenting path, the
flow value could be increased, contradicting the
maximality of /.

“‘;--' Proof (continued)

i

(3) = ({): Define S = {v € J': there exists a path in G,
from s to v}, and let 7= J/\ S. Since /" admits no
augmenting paths, there is no path from s to 7 in G, .
Hence, s € Sand 7 € 7, and thus (S, 7) is a cut. Consider
any vertices z € Sand v € 7.

pathin G, S| T

We must have ¢, (u, v) = 0, since if ¢, (u, v) > 0, then v € S,
notv € 7'as assumed Thus f(u,v)= c(u V), since ¢, (u, v)
=c(u, v)—f(u,v). Summingoverallz € Sandv e T

yields f(S, 7) = ¢(S, T), and since | /| = f(S, T), the theorem

follows.
4/12/05 CS 5633 Analysis of Algorithms 21

N rord-rulkerson max-1ow
2" algorithm

Algorithm:
flu,vl<«Oforallu,velV
while an augmenting path p in G wrt / exists
do augment / by ¢,(p)

1\“

Can be slow:

4/12/05 CS 5633 Analysis of Algorithms

22

-m‘ Ford-Fulkerson max-flow
" algorithm

Algorithm:
flu,vl<«Oforallu,velV
while an augmenting path p in G wrt / exists
do augment / by ¢,(p)

Can be slow:

.
AR

0:10°

-m‘ Ford-Fulkerson max-flow
" algorithm

Algorithm:
flu,vl<«Oforallu,velV
while an augmenting path p in G wrt / exists
do augment / by ¢,(p)

Can be slow:

.
AR

0:10°

B rord-rulkerson max-1ow
» algorithm

Algorithm:
flu,vl<«Oforallu,velV
while an augmenting path p in G wrt / exists
do augment / by ¢,(p)

Can be slow:

4/12/05 CS 5633 Analysis of Algorithms

25

N rord-rulkerson max-1ow
»* algorithm

Algorithm:
flu,vl<«Oforallu,velV
while an augmenting path p in G wrt / exists
do augment / by ¢,(p)

Can be slow:

4/12/05 CS 5633 Analysis of Algorithms

26

-u_l!! Ford-Fulkerson max-flow
»* algorithm

Algorithm:
flu,vl<«Oforallu,velV
while an augmenting path p in G wrt / exists
do augment / by ¢,(p)

Can be slow:

-u_l!! Ford-Fulkerson max-flow
»* algorithm

Algorithm:
flu,vl<«Oforallu,velV
while an augmenting path p in G wrt / exists
do augment / by ¢,(p)

Can be slow:

T rora-ruikerson max-now
L .
* algorithm

Algorithm:
flu,vl<«Oforallu,velV
while an augmenting path p in G wrt / exists
do augment / by ¢,(p)

|
Y

Can be slow:

2 billion iterations on a graph with 4 vertices!

4/12/05 CS 5633 Analysis of Algorithms 29

T rora-ruikerson max-now
L .
* algorithm

Algorithm:
flu,vl<«Oforallu,velV
while an augmenting path p in G wrt / exists
do augment / by ¢,(p)

|
Y

Runtime:

* Let | /% be the value of a maximum flow, and
assume it is an integral value.
* The initialization takes O(|E|)
* There are at most | /*| iterations of the loop
* Find an augmenting path with DFS in O(|V|+|E|) time
 Each augmentation takes O(|)/|) time

= O(|E| -|f*|) in total

4/12/05 CS 5633 Analysis of Algorithms 30

;:f‘:;,‘ Edmonds-Karp algorithm

Edmonds and Karp noticed that many people’s
implementations of Ford-Fulkerson augment along a
breadth-first augmenting path: a shortest path in G, from s
to where each edge has weight 1. These implementations
would always run relatively fast.

Since a breadth-first augmenting path can be found in
O(V+E) time, their analysis, which provided the first
polynomial-time bound on maximum flow, focuses on
bounding the number of flow augmentations.

(In independent work, Dinic also gave polynomial-time
bounds.)

= Running time of Edmonds-
. - ‘
w0 Karp

* One can show that the number of flow augmentations
(i.e., the number of iterations of the while loop) is
O(V E).

* Breadth-first search runs in O(V+FE) time
* All other bookkeeping is O()') per augmentation.

= The Edmonds-Karp maximum-flow
algorithm runs in O(V/ £?) time.

“ [[]
" Monotonicity lemma

™

Lemma. Let 6(v) = 6,(s, v) be the breadth-first
distance from s to v 1n G,. During the Edmonds-
Karp algorithm, 6(v) i 1ncreases monotonically.

Proof. Suppose that / is a flow on (G, and augmentation
produces a new flow f'. Let &'(v) = 6,(s, v). We’ll
show that &'(v) > 5(v) by induction on 8(v) For the base
case, 0'(s) = d(s) = 0.
For the inductive case, consider a breadth-first path s —
-~ —u—>vinG,. We must have 6'(v) = 6'(u) + 1, since
subpaths of shortest paths are shortest paths. Certainly,
(u,v) € £, and now consider two cases depending on
whether (u v) € E,.

4/12/05 CS 5633 Analysis of Algorithms 33

- Casel

Case: (u,v) € E,.
We have
o(v) <d(u)+1 (triangle inequality)
<o'(u)+1 (induction)
=0'(v) (breadth-first path),

and thus monotonicity of 6(v) is established.

4/12/05 CS 5633 Analysis of Algorithms 34

o~ Case 2

Case: (u,v) ¢ Ej.

Since (u,v) € £, the augmenting path p that produced
/" from f must have included (v, #). Moreover, p is a
breadth-first path in G

p=S—>r>Vo>uUu—>- 1.
Thus, we have
o(v) =0(u)—1 (breadth-first path)
<d'(u)—1 (induction)
=0'(v)—2 (breadth-first path)
<80,
thereby establishing monotonicity for this case, too. []

ALGORITHMS

e o .
"* Counting flow augmentations

™

Theorem. The number of flow augmentations
in the Edmonds-Karp algorithm (Ford-Fulkerson
with breadth-first augmenting paths) is O(V'E).

Proof. Let p be an augmenting path, and suppose that
we have ¢, (u, v) ¢/(p) for edge (v, v) € p. Then, we
say that (u V) 18 crmcal and it disappears from the
residual graph after flow augmentation.

Example: cr(p)=2
2 4 7 2 3

6 G339 D3I
3 2 1 2

s | R .
"* Counting flow augmentations

™

Theorem. The number of flow augmentations
in the Edmonds-Karp algorithm (Ford-Fulkerson
with breadth-first augmenting paths) is O(V'E).

Proof. Let p be an augmenting path, and suppose that

the residual capa01ty of edge (1, v) € pis ¢/ (u, v) = c/(p).
Then, we say (u, v) is critical, and it dlsappears from the
residual graph after flow augmentation.

Example:
2 5 1
5 4 4 3 4

4/12/05 CS 5633 Analysis of Algorithms 37

T Lounung rnmow augmentauons
e .
»* (continued)

The first time an edge (u, v) is critical, we have 6(v) =
S(u) + 1, since p is a breadth-first path. We must wait
until (v, ©) is on an augmenting path before (u, v) can
be critical again. Let 6’ be the distance function when
(v, u) 1s on an augmenting path. Then, we have
O'(u) =0'(v)+1 (breadth-first path)
>0(v)+1 (monotonicity)
=0(u)+2 (breadth-first path).

Example:

9 ©

4/12/05 CS 5633 Analysis of Algorithms 38

@2 Counting flow augmentations
7 (continued)

The first time an edge (u, v) is critical, we have 6(v) =
o(u) + 1, since p is a breadth-first path. We must wait
until (v, ©) is on an augmenting path before (u, v) can
be critical again. Let 6’ be the distance function when
(v, u) is on an augmenting path. Then, we have
O'(u) =0'(v)+ 1 (breadth-first path)
>d(v)+1 (monotonicity)
=0(u)+2 (breadth-first path).

Example: S(u) =5

@2 Counting flow augmentations
7 (continued)

The first time an edge (u, v) is critical, we have 6(v) =
o(u) + 1, since p is a breadth-first path. We must wait
until (v, ©) is on an augmenting path before (u, v) can
be critical again. Let 6’ be the distance function when
(v, u) 1s on an augmenting path. Then, we have
O'(u) =0'(v)+1 (breadth-first path)
>d(v)+1 (monotonicity)
=0(u) +2 (breadth-first path).

Example: S(u) =5

9 Y

5(v) =6

T Lounung 1mnmow augmentauons
A .
" (continued)

The first time an edge (u, v) is critical, we have 6(v) =
o(u) + 1, since p is a breadth-first path. We must wait
until (v, ©) is on an augmenting path before (u, v) can
be critical again. Let 6’ be the distance function when
(v, u) 1s on an augmenting path. Then, we have
O'(u) =0'(v)+1 (breadth-first path)
>0(v)+1 (monotonicity)
=0(u) +2 (breadth-first path).

Example: O(u) 27

|
EE

-
-

8(1) > 6

4/12/05 CS 5633 Analysis of Algorithms 41

T Lounung rnmow augmentauons
A .
" (continued)

The first time an edge (u, v) is critical, we have 6(v) =
S(u) + 1, since p is a breadth-first path. We must wait
until (v, ©) is on an augmenting path before (u, v) can

be critical again. Let 6’ be the distance function when

(v, u) 1s on an augmenting path. Then, we have
O'(u) =0'(v)+1 (breadth-first path)

|
EE

>0(v)+1 (monotonicity)
=0(u)+2 (breadth-first path).
Example: O(u) 27
o(v) =6

4/12/05 CS 5633 Analysis of Algorithms 42

== Counting flow augmentations
s .
= (continued)

The first time an edge (u, v) is critical, we have 6(v) =
o(u) + 1, since p is a breadth-first path. We must wait
until (v, ©) is on an augmenting path before (u, v) can
be critical again. Let 6’ be the distance function when
(v, u) is on an augmenting path. Then, we have
O'(u) =0'(v)+1 (breadth-first path)
>d(v)+1 (monotonicity)
=0(u)+2 (breadth-first path).

Example: O(u) 27

= Running time of Edmonds-
. - ‘
= Karp

Distances start out nonnegative, never decrease, and are
at most |//| — 1 until the vertex becomes unreachable.
Thus, (1, v) occurs as a critical edge O()') times, because
d(v) increases by at least 2 between occurrences. Since
the residual graph contains O(F) edges, the number of
flow augmentations is O(V'E). []

Corollary. The Edmonds-Karp maximum-flow
algorithm runs in O(V/ £?) time.

Proof. Breadth-first search runs in O(F) time, and all
other bookkeeping is O()) per augmentation. []

“ <~ Best to date

* The asymptotically fastest algorithm to date for
maximum flow, due to King, Rao, and Tarjan,
runs in OV E logg 1, V) time.

* [f we allow running times as a function of edge
weights, the fastest algorithm for maximum
flow, due to Goldberg and Rao, runs in time

O(min{V?3, EV?} . Elog (V¥E +2) - log C),
where C' is the maximum capacity of any edge
in the graph.

4/12/05 CS 5633 Analysis of Algorithms 45

