e CS 5633 -- Spring 2005

|
EE Y

ALGORITHMS

i
\\\‘ \‘

Union-Find Data Structures

Carola Wenk

Slides courtesy of Charles Leiserson with small
changes by Carola Wenk

3/31/05 CS 5633 Analysis of Algorithms 1

- DISJOHNT-5CT ata Sstruciurce
" (Union-Find)

Problem:
* Maintain a dynamic collection of pairwise-disjoint
sets S={S,5,, ..., S }.
* Each set S; has one element distinguished as the
representative element, rep[S.].
* Must support 3 operations:
* MAKE-SET(x): adds new set {x} to S
with rep[{x}]|=x (foranyx ¢ S forall i’
* UNION(x, y): replaces sets S, S, with S, U S in S
(for any x, y in distinct sets S, S,)
* FIND-SET(x): returns representative rep[Sx]
of set S| containing element x

3/31/05 CS 5633 Analysis of Algorithms 2

;;j‘:..‘ Simple linked-list solution

Store each set S; = {x,, x,, ..., x, | as an (unordered)
doubly linked list. Define representative element
rep[S;] to be the front of the list, x,.

Sz' : X, X, T | X;
rep[S;]
* MAKE-SET(x) initializes x as a lone node. — ©O(1)
* FIND-SET(x) walks left in the list containing x
until it reaches the front of the list. — O(n)

« UNION(x, y) concatenates the lists containing
x and y, leaving rep. as FIND-SET|x]. —0(1)

l!!!— Disjoint-set data structure
" (Union-Find) I1

* Note that in all operations the elements x, y are
given (as pointers or references for example)

* Hence, we do not need to first search for the
element in the data structure. We only search
for the representative element.

&~ Simple balanced-tree solution
maintain how?
Store each set S; = {x,, x,, ..., x, | as a_balanced tree
(ignoring keys). Define representative element

rep[S.] to be the root of the tree.

* MAKE-SET(x) initializes x
as a lone node. —0(1) repS][x
* FIND-SET(x) walks up the '/ - §
tree containing x until it P
reaches the root. — ®(log n) 7 4\
« UNION(x, y) concatenates
the trees containing x and y,
changing rep. of x or y — O(1)

3/31/05 CS 5633 Analysis of Algorithms 5

X3

X2 | | X5

S = X1, X9, X3, Xy, X5}

“ <~ Plan of attack

* We will build a simple disjoint-union data structure

that, in an amortized sense, performs significantly
better than ®(log n) per op., even better than
O(log log n), ©(log log log n), ..., but not quite O(1).

* To reach this goal, we will introduce two key tricks.

Each trick converts a trivial ®(») solution into a
simple ®(log n) amortized solution. Together, the
two tricks yield a much better solution.

* First trick arises in an augmented linked list.

Second trick arises in a tree structure.

3/31/05 CS 5633 Analysis of Algorithms 6

.-'f";,‘ Augmented linked-list solution

w

Store S, = {x,, x,, ..., x, } as unordered doubly linked list.

Augmentation: Each element x, also stores pointer
replx;] to rep[S,] (which is the front of the list, x,).

rep
 — |
S [T, ol T
replS;]
* FIND-SET(x) returns rep|x]. —0(1)

» UNION(x, y) concatenates the lists containing
x and y, and updates the rep pointers for
- all elements in the list containing y. - ®(_”)

--‘ Example of
~ augmented linked-list solution

Each element x; stores pointer rep[x;| to rep[S,].
UNION(x, y)
* concatenates the lists containing x and y, and
« updates the rep pointers for all elements in the
list containing y.

rep
Sl | % rep
repls,] — |
A I 2 2 Y3

replS,]

e xampic ol
= - . . °
~ augmented linked-list solution

Each element x; stores pointer rep[x;| to rep[S;].
UNION(x, y)
* concatenates the lists containing x and y, and
« updates the rep pointers for all elements in the
list containing y.

 US rep

S S
ad X21\ rep
repls.] \\ [—— |
Y1 Y2 Y3
replS,]

3/31/05 CS 5633 Analysis of Algorithms 9

e Lxampic ot
= - .] °
~ augmented linked-list solution

Each element x; stores pointer rep[x;| to rep[S;].
UNION(x, y)
* concatenates the lists containing x and y, and
« updates the rep pointers for all elements in the
list containing y.

. rep
S,US,: |
i uzl A\
replS, U] \
) Y1 Y2 Y3

3/31/05 CS 5633 Analysis of Algorithms 10

;\I".I!MIIH-“\ [[
“<" Alternative concatenation

UNION(x, y) could instead
* concatenate the lists containing y and x, and
« update the rep pointers for all elements in the
list containing x.

rep
rep SV | X2
[| rep[S,]
S) V1 p%))3

rep[S,]

;\I".I!MIIH-“\ [[]
“<" Alternative concatenation

UNION(x, y) could instead
* concatenate the lists containing y and x, and
* update the rep pointers for all elements in the
list containing x.

rep
/ | *1)
S us : rep
* Y u—| | , rep[S,]
Y1 p%))3
rep[S,]

i * .
“." Alternative concatenation

UNION(x, y) could instead
* concatenate the lists containing y and x, and
« update the rep pointers for all elements in the
list containing x.

rep
|
S,x U SJ : rep / | *1 X
— |
V1) V3 !
replS, U S)]

3/31/05 CS 5633 Analysis of Algorithms 13

S0 Irick 1: Smaller 1nto larger
S (weighted-union heuristic)

To save work, concatenate smaller list onto the end
of the larger list. Cost = ®(length of smaller list).
Augment list to store its weight (# elements).

* Let n denote the overall number of elements
(equivalently, the number of MAKE-SET operations

* Let m denote the total number of operations.

* Let / denote the number of FIND-SET operations.

Theorem: Cost of all UNION’s is O(n log n).

Corollary: Total cost is O(m + n log n).

3/31/05 CS 5633 Analysis of Algorithms 14

= Analysis of Trick 1

o (weighted-union heuristic)

Theorem: Total cost of UNION’s 1s O(7 log n).

Proof. » Monitor an element x and set S| containing it.

» After initial MAKE-SET(x), weight[S.] = 1.

* Each time S, is united with S, weight[S | = weight[S],
*pay | to update rep|x], and

* weight[S,] at least doubles (increases by weight[S).

* Each time S, is united with smaller set S,
* pay nothlng, and
* weight[S,] only increases.

Thus pay < log » for x.

=7 Disjoint set forest:
w3 Representing sets as trees
Store each set S; = {x,, x,, ..., x, | as an unordered,

potentially unbalanced, not necessarily binary tree,
storing only parent pointers. rep[S.] 1s the tree root.

i 9 9 9 9 9

asalonenode. —O(1)
« FIND-SET(x) walks up the rep[S]|x,
tree containing x until it AN
reaches the root. — O(depth|x]) |x, i
« UNION(x, 1) concatenates / N\
the trees containing x and y... X | x5 | [%6

“ o~ Trick 1 adapted to trees

» UNION(x, y) can use a simple concatenation strategy:
Make root FIND-SET()’) a child of root FIND-SET(x).
— FIND-SET(y) = FIND-SET(x).

» Adapt Trick 1 to this context: - il
Union-by-weight:
Merge tree with smaller az! il I
weight into tree with VAR L\
larger weight. Yo [Xs] [Fe Ya| |3

. . / N\
» Variant of Trick 1 (see book): | s

Union-by-rank:
rank of a tree = its height

3/31/05 CS 5633 Analysis of Algorithms 17

S 1ricK 1 adapted to trees
WY (union-by-weight)

* Height of tree is logarithmic in weight, because:
* Induction on the weight
* Height of a tree T is determined by the two
subtrees T, T, that T has been united from.
* Inductively the heights of T,, T, are the logs
of their weights.
* height(T) = max(height(T,), height(T,))
possibly +1, but only if T, T, have same height

* Thus total cost is O(m + f'log n).

3/31/05 CS 5633 Analysis of Algorithms 18

"~ Trick 2: Path compression

When we execute a FIND-SET operation and walk
up a path p to the root, we know the representative
for all the nodes on path p.

X1

Path compression makes

all of those nodes direct Xy X [
children of the root. / N\ |
Cost of FIND-SET(x) T2l %51 16 Yal)3

is still O(depth|x]).

FIND-SET(y,) [Y2] |)s

"~ Trick 2: Path compression

When we execute a FIND-SET operation and walk
up a path p to the root, we know the representative
for all the nodes on path p.

X1
Path compression makes
all of those nodes direct | X, X |y
children of the root. / N\ [
Cost of FIND-SET(x) T2l %51 |6 Yal |l

is still O(depth|x]).

FIND-SET(y,) [Y2| |)s

i R .
“ <~ Trick 2: Path compression

When we execute a FIND-SET operation and walk
up a path p to the root, we know the representative
for all the nodes on path p.

X1
Path compression makes .~ \

all of those nodes direct | X, | (vl s
children of the root. / N\ [[
Cost of FIND-SET(x) T2l [%51 1 %6] |V s

is still ©(deprh[x]). FIND-SET(),)
- 2

3/31/05 CS 5633 Analysis of Algorithms 21

i R .
“ <~ Trick 2: Path compression

* Note that UNION(x,y) first calls FIND-SET(x)
FIND-SET(y). Therefore path compression also
affects UNION operations.

3/31/05 CS 5633 Analysis of Algorithms 22

-\I.".‘”“I“‘h o [
“ <" Analysis of Trick 2 alone

Theorem: Total cost of FIND-SET’s 1s O(m log n).
Proof: By amortization. Omitted.

Theorem: If all UNION operations occur before
all FIND-SET operations, then total cost is O(m1).

Proof: If a FIND-SET operation traverses a path
with £ nodes, costing O(k) time, then £ — 2 nodes
are made new children of the root. This change
can happen only once for each of the » elements,
so the total cost of FIND-SET is O(f + n). []

= Ackermann’s function 4, and
w01 it’s “inverse” o

Define 4. (/) J+1 it k=0,
erne A, (J) = A,gjjl)(j) if k>1. —iterate j+1 times

A)j)=j+1 A,(1)=2
A,G)~2j A,(1)=3
A(j)~2j Y >.2j A,(1)=17

A5(1) = 2047

.2/
22.. }J
A5(j) > 2
A4(j) 1s a lot bigger. A,(1)>2

Define o(n) = min {k : 4;(1) = n} <4 for practical n

22047
22" }2048 times

S Analysis of 1TICKS 1 + 2
" for disjoint-set forests

Theorem: In general, total cost is O(m ou(n)).
(long, tricky proof — see Section 21.4 of CLRS)

3/31/05 CS 5633 Analysis of Algorithms 25

 Applicauon.
" Dynamic connectivity

Suppose a graph is given to us incrementally by
* ADD-VERTEX(V)
* ADD-EDGE(u, v)

and we want to support connectivity queries:
* CONNECTED(u, V):
Are 1 and v in the same connected component?

For example, we want to maintain a spanning forest.
so we check whether each new edge connects a
previously disconnected pair of vertices.

3/31/05 CS 5633 Analysis of Algorithms 26

= Application:
" Dynamic connectivity

Sets of vertices represent connected components.
Suppose a graph is given to us incrementally by

* ADD-VERTEX(Vv) : MAKE-SET(V)

* ADD-EDGE(u, v) : if not CONNECTED(u, V)

then UNION(v, w)

and we want to support connectivity queries:

* CONNECTED(u, v): : FIND-SET(2) = FIND-SET(V)

Are 1 and v in the same connected component?

For example, we want to maintain a spanning forest,

so we check whether each new edge connects a
previously disconnected pair of vertices.

