||||||||||||||

wr— CS 5633 -- Spring 2005

ALGORITHMS

Minimum Spanning Trees
Carola Wenk

Slides courtesy of Charles Leiserson with
changes and additions by Carola Wenk

3/24/05 CS 5633 Analysis of Algorithms 1

ﬁ Graphs (review)

Definition. A directed graph (digraph)

G = (V, E) 1s an ordered pair consisting of

* a set J of vertices (singular: vertex),

saset £ V' x Vof edges.

In an undirected graph G = (V, E), the edge

set £ consists of unordered pairs of vertices.

In either case, we have |E| = O(|V]?).
Moreover, if G is connected, then |E|>|V]— 1.

(Review CLRS, Appendix B.4 and B.5.)

3/24/05 CS 5633 Analysis of Algorithms 2

||||||||||||||

s representation

The adjacency matrix of a graph G = (V, E), where
V=A{1,2,...,n},isthematrix A[1 .. n, 1 ..n|

given by
[1ifG)) eE,
Ali /) { 0 if(i,j) ¢ E.

A

3
g 0 1 0 O(V?) storage
’ 1 0 = dense
0 0
1 0

1
2
99

representation.

N eNeleollS
S OO |

||||||||||||||

'!! ~ Adjacency-list representation

An adjacency list of a vertex v € V' is the list Adj[v]
of vertices adjacent to v.

[]-1
@’0 Adj[2] = 3}
Adj[3]=)
B)—4) ugi=¢

For undirected graphs, | Adj[v]| = degree(v).
For digraphs, | Adj[v] | = out-degree(v).

“<* Adjacency-list representation

Handshaking Lemma:
* For undirected graphs:
2. .ydegree(v) =2|E|
* For digraphs:
2oy in-degree(v) + 2. _, out-degree(v) =2 | E |

—> adjacency lists use O(|V] + |E|) storage
= a sparse representation

3/24/05 CS 5633 Analysis of Algorithms 5

w o (] L]
“«" Minimum spanning trees

Input: A connected, undirected graph G = (V, E)

with weight function w : £ — R.

* For simplicity, assume that all edge weights are
distinct. (CLRS covers the general case.)

Output: A spanning tree T'— a tree that connects
all vertices — of minimum weight:

w(T) = Zw(u,v).

(u,v)el

3/24/05 CS 5633 Analysis of Algorithms 6

;:j;%,‘ Example of MST

9

D
ISO

6 12
5
14 7
8

@7 Hallmark for “greedy”
~ algorithms

@

g

0

Greedy-choice property

A locally optimal choice
is globally optimal.

%

Theorem. Let 7'be the MST of G = (V, E),
and let 4 — V. Suppose that (1, v) € E is the
least-weight edge connecting 4 to '\ 4.
Then, (1, v) € T.

“<~ Proof of theorem
Proof. Suppose (1, v) ¢ T. Cut and paste.

A :
° < 7\ 4 (u, v) = least-weight edge
¢ < connecting 4 to V'\ 4

3/24/05 CS 5633 Analysis of Algorithms 9

“<~ Proof of theorem
Proof. Suppose (u, v) ¢ T. Cut and paste.

Q@ € 4

o c V\4 (u, v) = least-weight edge

connecting 4 to V'\ 4
Consider the unique simple path from u« to v in 7.

3/24/05 CS 5633 Analysis of Algorithms 10

“ <~ Proof of theorem
Proof. Suppose (u, v) ¢ T. Cut and paste.

Q@ € 4

o« cV\4 (u, v) = least-weight edge

connecting 4 to V'\ 4
Consider the unique simple path from u« to v in 7.

Swap (u, v) with the first edge on this path that
connects a vertex in 4 to a vertex in V' \ 4.

“<~ Proof of theorem

Proof. Suppose (u, v) ¢ T. Cut and paste.

Q@ € 4

o cV\4 (u, v) = least-weight edge

connecting 4 to V'\ 4
Consider the unique simple path from u« to v in 7.

Swap (u, v) with the first edge on this path that
connects a vertex in 4 to a vertex in V' \ 4.

A lighter-weight spanning tree than 7 results. []

."":!“'-! Prim’s algorithm

IDEA: Maintain /| 4 as a priority queue . Key
each vertex in O with the weight of the least-
weight edge connecting it to a vertex in 4.
O«V
key|v] <~ forall v e V/
key|s] < 0 for some arbitrary s € J/
while O # &
do u <— EXTRACT-MIN(Q)
for cach v € Adj[u]
doif v € O and w(u, v) < key[v]
then key[v] < w(u, v) > DECREASE-KEY

n[v] < u
At the end, {(v, n[v])} forms the MST.
3/24/05 CS 5633 Analysis of Algorithms 13

.‘:“!ﬂ"! Example of Prim’s algorithm

Q@ € 4
e c/V\4

1 < EXTRACT-MIN(O)
for each v € Adj[u]

do if v € O and w(u, v) < key[v]
then key[v] < w(u, v)> DECREASE-KEY

n[v] < u

3/24/05 CS 5633 Analysis of Algorithms 14

.j:!\,'-! Example of Prim’s algorithm

@ €4
e cV\4

1 < EXTRACT-MIN(Q)
for each v € Adj[u]

do if v € O and w(u, v) < key[v]
then key[v] < w(u, v)> DECREASE-KEY

.1 .

.j:!\,'-! Example of Prim’s algorithm

u < EXTRACT-MIN(Q)
for each v € Adj[u]

do if v € O and w(u, v) < key[v]
then key[v] < w(u, v)> DECREASE-KEY

.. .

% Example of Prim’s algorithm

Q@ € 4
e c '\ 4

1 < EXTRACT-MIN(Q)
for each v € Adj[u]
do if v € O and w(u, v) < key[v]
then key[v] < w(u, v)> DECREASE-KEY

n[v] < u

3/24/05 CS 5633 Analysis of Algorithms 17

% Example of Prim’s algorithm

Q €4
e c/V\4

u < EXTRACT-MIN(Q)
for each v € Adj[u]
do if v € O and w(u, v) < key[v]
then key[v] < w(u, v)> DECREASE-KEY

n[v] < u

3/24/05 CS 5633 Analysis of Algorithms 18

||||||||||||||

1 <— EXTRACT-MIN(Q)
for each v € Adj[u]
do if v € O and w(u, v) < key[v]
then key[v] < w(u, v)> DECREASE-KEY

.1 .

||||||||||||||

'!!- ~ Example of Prim’s algorithm

@ €4 12

e cV\4
@ 5 ~Q
D@

u < EXTRACT-MIN(Q)
for each v € Adj[u]
do if v € O and w(u, v) < key[v]
then key[v] < w(u, v)> DECREASE-KEY

.. .

“E Example of Prim’s algorithm

Q@ € 4
e c '\ 4
15@

1 < EXTRACT-MIN(Q)
for each v € Adj[u]
do if v € O and w(u, v) < key[v]
then key[v] < w(u, v)> DECREASE-KEY
n[v] < u

3/24/05 CS 5633 Analysis of Algorithms 21

“E Example of Prim’s algorithm

Q €4
e c/V\4
15@

u < EXTRACT-MIN(Q)
for each v € Adj[u]
do if v € O and w(u, v) < key[v]
then key[v] < w(u, v)> DECREASE-KEY
n[v] < u

3/24/05 CS 5633 Analysis of Algorithms 22

||||||||||||||

ﬁ Example of Prim’s algorithm

@ €4
e cV\4
% 15@

10

1 <— EXTRACT-MIN(Q)
for each v € Adj[u]
do if v € O and w(u, v) < key[v]
then key[v] < w(u, v)> DECREASE-KEY

.1 .

||||||||||||||

ﬁ Example of Prim’s algorithm

Q €4
e cV\4
% ”@

10

u < EXTRACT-MIN(Q)
for each v € Adj[u]
do if v € O and w(u, v) < key[v]
then key[v] < w(u, v)> DECREASE-KEY

.. .

“E Example of Prim’s algorithm

Q €4
e cV/\4
% 15@

10

1 < EXTRACT-MIN(Q)
for each v € Adj[u]
do if v € O and w(u, v) < key[v]
then key[v] < w(u, v)> DECREASE-KEY

n[v] < u

3/24/05 CS 5633 Analysis of Algorithms 25

“E Example of Prim’s algorithm

Q €4
e cV/\4
% ”@

10

u < EXTRACT-MIN(Q)
for each v € Adj[u]
do if v € O and w(u, v) < key[v]
then key[v] < w(u, v)> DECREASE-KEY

n[v] < u

3/24/05 CS 5633 Analysis of Algorithms 26

||||||||||||||

ﬁ Analysis of Prim

O«V
(V) key[v] «<— o forallv e VV

total key|s| < O for some arbitrary s € V/
e while O # &
do © <~ EXTRACT-MIN(Q)
V| J for each v € Adj[u]
times | degree(u) doif v € O and w(u, v) < key[V]
times then key[v] < w(u, v)
L n[v] < u

Handshaking Lemma = ©O(|£|) implicit DECREASE-KEY’s.
Time = O(|V]) T} EXTRACT-MIN T O(|E]) T DECREASE-KEY

||||||||||||||

ﬁ Analysis of Prim (continued)

Time = O(|V])- T, EXTRACT-MIN T O(E])-T DECREASE-KEY

Q Tgxtract-Miv IDrcrease-key — Total
array oV o(1) o(V]?)
bina
hea;y O(log|V]) ~ O(log|V]) | O(IE|log|V])

Fibonacci O(log|V]) O(1) O(E| +|V]|log|V
heap amortized amortized worst case

."“;" Kruskal’s algorithm

i

IDEA (again greedy):
Repeatedly pick edge with smallest weight as long as it
does not form a cycle.

* The algorithm creates a set of trees (a forest)

* During the algorithm the added edges merge the
trees together, such that in the end only one tree
remains

* The correctness of this greedy strategy is not obvious
and needs to be proven. (Proof skipped here.)

3/24/05 CS 5633 Analysis of Algorithms 29

' Example of Kruskal’s algorithm

S:{ {@}9{]2}3{9}9{(_1}9{9}
BRRTIRERNE

= MST edges
.a setrepr.

Every node is a single tree.

3/24/05 CS 5633 Analysis of Algorithms 30

~ ~* Example of Kruskal’s algorithm

S={ {a},{b}.{e}, {d}. {f}
1 igh e h})

= MST edges
.a setrepr.

14

Edge 3 merged two singleton trees.

~ ~* Example of Kruskal’s algorithm

S={ fa},{d}.{f}, (g}
1 fehhbe})

= MST edges
.a setrepr.

14

.":‘;‘;'-‘l Example of Kruskal’s algorithm ."':‘;‘;'-‘l Example of Kruskal’s algorithm
S={ {d}.iL}, {g} S={ {d}, {g}

— MBT edges 1 {eh}, {ab,c}} — MBT edges 1 {eh} {abc f}}

.a setrepr. .a setrepr.

14 14

3/24/05 CS 5633 Analysis of Algorithms 33 3/24/05 CS 5633 Analysis of Algorithms 34

.":‘;‘;'-‘l Example of Kruskal’s algorithm ."':‘;‘;'-‘l Example of Kruskal’s algorithm
S={ {d}, {g} S=1{1g}

— MST edges 12 {ga ha a, ba C, f} } — MST edges 12 {Q) ha a, ba C, f) d} }

.a setrepr. _a_ setrepr.

14

Edge 8 merged the two bigger trees.

14

.":‘;‘;'-‘l Example of Kruskal’s algorithm

S=1{ {g}
1, lehabcfd)

= MST edges
.a setrepr.

Skip edge 10 as it would cause a cycle.

“ .~ Example of Kruskal’s algorithm
S=1{ 1g}

— MS5T edges 12 {Qa h: a, ba C, f) d} }

a_ setrepr. *

L 4

Skip edge 12 as it would cause a cycle.

3/24/05 CS 5633 Analysis of Algorithms 37 3/24/05 CS 5633 Analysis of Algorithms 38
.""‘;‘;'-‘l Example of Kruskal’s algorithm .""‘;‘;'-‘l Example of Kruskal’s algorithm

S=i1igl
1, iehabcfd)

= MST edges
.a setrepr.

14

Skip edge 14 as it would cause a cycle.

S={{e,h,a,b,c,f,d, g}

= MST edges
.a setrepr.

14

T UIS)oImt-set aata struciure
[- ‘ Ld [
»* (Union-Find)

» Maintains a dynamic collection of pairwise-disjoint
sets S = {5,,5,, ..., S }.
 Each set S, has one element distinguished as the

representative element.
 Supports operations:
O(l) » MAKE-SET(x): adds new set {x} to S
O(au(n)) = UNION(x, y): replaces sets S, S with S, U S|

X \4

O(o(n)) « FIND-SET(x): returns the representative of the
set S, containing element x

1 < a(n) <log*(n) < log(log(n)) < log(n)

3/24/05 CS 5633 Analysis of Algorithms 41

“ <" Kruskal’s algorithm

IDEA: Repeatedly pick edge with smallest
weight as long as it does not form a cycle.

S« & D Swill contain all MST edges

oV for each v €V do MAKE-SET(v)
O(|Ellog|E[) Sort edges of £ in non-decreasing order according to w

O(|E)) For each (1,v) € £ taken in this order do

if FIND-SET(x) # FIND-SET(v) > u,v in different trees
O(o(| V1) A AU {(uy)
UNION(z,v) > Edge (u,v) connects the two trees

Runtime: O(|V|+|E|log|E[+|E|o(|V])) = O(|E| log |E])

3/24/05 CS 5633 Analysis of Algorithms 42

;:"‘;;:,‘ MST algorithms

* Prim’s algorithm:
» Maintains one tree
* Runs in time O(|£| log |V]), with binary heaps.

* Kruskal’s algorithm:
» Maintains a forest and uses the disjoint-set
data structure
* Runs in time O(|£] log |E))

* Best to date: Randomized algorithm by Karger,
Klein, Tarjan [1993]. Runs in expected time
oVl +|E])

