
CS 5633 Analysis of Algorithms 13/24/05

CS 5633 -- Spring 2005

Minimum Spanning Trees
Carola Wenk

Slides courtesy of Charles Leiserson with
changes and additions by Carola Wenk

CS 5633 Analysis of Algorithms 23/24/05

Graphs (review)
Definition. A directed graph (digraph)
G = (V, E) is an ordered pair consisting of
• a set V of vertices (singular: vertex),
• a set E ⊆ V × V of edges.
In an undirected graph G = (V, E), the edge
set E consists of unordered pairs of vertices.
In either case, we have |E | = O(|V| 2).
Moreover, if G is connected, then |E | ≥ |V | – 1.

(Review CLRS, Appendix B.4 and B.5.)

CS 5633 Analysis of Algorithms 33/24/05

Adjacency-matrix
representation

The adjacency matrix of a graph G = (V, E), where
V = {1, 2, …, n}, is the matrix A[1 . . n, 1 . . n]
given by

A[i, j] = 1 if (i, j) ∈ E,
0 if (i, j) ∉ E.

22 11

33 44

A 1 2 3 4
1
2
3
4

0 1 1 0
0 0 1 0
0 0 0 0
0 0 1 0

Θ(|V| 2) storage
⇒ dense
representation.

CS 5633 Analysis of Algorithms 43/24/05

Adjacency-list representation
An adjacency list of a vertex v ∈ V is the list Adj[v]
of vertices adjacent to v.

22 11

33 44

Adj[1] = {2, 3}
Adj[2] = {3}
Adj[3] = {}
Adj[4] = {3}

For undirected graphs, |Adj[v] | = degree(v).
For digraphs, | Adj[v] | = out-degree(v).

CS 5633 Analysis of Algorithms 53/24/05

Adjacency-list representation

Handshaking Lemma:
• For undirected graphs:

∑v∈V degree(v) = 2 |E |
• For digraphs:

∑v∈V in-degree(v) + ∑v∈V out-degree(v) = 2 | E |

⇒ adjacency lists use Θ(|V| + |E|) storage
⇒ a sparse representation

CS 5633 Analysis of Algorithms 63/24/05

Minimum spanning trees

Input: A connected, undirected graph G = (V, E)
with weight function w : E → R.
• For simplicity, assume that all edge weights are

distinct. (CLRS covers the general case.)

∑
∈

=
Tvu

vuwTw
),(

),()(.

Output: A spanning tree T — a tree that connects
all vertices — of minimum weight:

CS 5633 Analysis of Algorithms 73/24/05

Example of MST

6 12
5

14

3

8

10

15

9

7

CS 5633 Analysis of Algorithms 83/24/05

Hallmark for “greedy”
algorithms

Greedy-choice property
A locally optimal choice

is globally optimal.

Theorem. Let T be the MST of G = (V, E),
and let A ⊆ V. Suppose that (u, v) ∈ E is the
least-weight edge connecting A to V \ A.
Then, (u, v) ∈ T.

CS 5633 Analysis of Algorithms 93/24/05

Proof of theorem
Proof. Suppose (u, v) ∉ T. Cut and paste.

∈ A
∈ V \ A

T:

u

v

(u, v) = least-weight edge
connecting A to V \ A

CS 5633 Analysis of Algorithms 103/24/05

Proof of theorem
Proof. Suppose (u, v) ∉ T. Cut and paste.

∈ A
∈ V \ A

T:

u

Consider the unique simple path from u to v in T.

(u, v) = least-weight edge
connecting A to V \ A

v

CS 5633 Analysis of Algorithms 113/24/05

Proof of theorem
Proof. Suppose (u, v) ∉ T. Cut and paste.

∈ A
∈ V \ A

T:

u
(u, v) = least-weight edge
connecting A to V \ A

v

Consider the unique simple path from u to v in T.
Swap (u, v) with the first edge on this path that
connects a vertex in A to a vertex in V \ A.

CS 5633 Analysis of Algorithms 123/24/05

Proof of theorem
Proof. Suppose (u, v) ∉ T. Cut and paste.

∈ A
∈ V \ A

T ′:

u
(u, v) = least-weight edge
connecting A to V \ A

v

Consider the unique simple path from u to v in T.
Swap (u, v) with the first edge on this path that
connects a vertex in A to a vertex in V \ A.
A lighter-weight spanning tree than T results.

CS 5633 Analysis of Algorithms 133/24/05

Prim’s algorithm
IDEA: Maintain V \ A as a priority queue Q. Key
each vertex in Q with the weight of the least-
weight edge connecting it to a vertex in A.
Q ← V
key[v] ←∞ for all v ∈ V
key[s] ← 0 for some arbitrary s ∈ V
while Q ≠ ∅

do u ← EXTRACT-MIN(Q)
for each v ∈ Adj[u]

do if v ∈ Q and w(u, v) < key[v]
then key[v] ← w(u, v) ⊳ DECREASE-KEY

π[v] ← u

At the end, {(v, π[v])} forms the MST.
CS 5633 Analysis of Algorithms 143/24/05

Example of Prim’s algorithm

∈ A
∈ V \ A

∞∞

∞∞ ∞∞

∞∞ 00

∞∞

∞∞

∞∞

6 12
5

14

3

8

10

15

9

7

u ← EXTRACT-MIN(Q)
for each v ∈ Adj[u]

do if v ∈ Q and w(u, v) < key[v]
then key[v] ← w(u, v)⊳ DECREASE-KEY

π[v] ← u

CS 5633 Analysis of Algorithms 153/24/05

Example of Prim’s algorithm

∈ A
∈ V \ A

∞∞

∞∞ ∞∞

∞∞ 00

∞∞

∞∞

∞∞

6 12
5

14

3

8

10

15

9

7

u ← EXTRACT-MIN(Q)
for each v ∈ Adj[u]

do if v ∈ Q and w(u, v) < key[v]
then key[v] ← w(u, v)⊳ DECREASE-KEY

π[v] ← u CS 5633 Analysis of Algorithms 163/24/05

Example of Prim’s algorithm

∈ A
∈ V \ A

∞∞

∞∞ 77

∞∞ 00

1010

∞∞

1515

6 12
5

14

3

8

10

15

9

7

u ← EXTRACT-MIN(Q)
for each v ∈ Adj[u]

do if v ∈ Q and w(u, v) < key[v]
then key[v] ← w(u, v)⊳ DECREASE-KEY

π[v] ← u

CS 5633 Analysis of Algorithms 173/24/05

Example of Prim’s algorithm

∈ A
∈ V \ A

∞∞

∞∞ 77

∞∞ 00

1010

∞∞

1515

6 12
5

14

3

8

10

15

9

7

u ← EXTRACT-MIN(Q)
for each v ∈ Adj[u]

do if v ∈ Q and w(u, v) < key[v]
then key[v] ← w(u, v)⊳ DECREASE-KEY

π[v] ← u CS 5633 Analysis of Algorithms 183/24/05

Example of Prim’s algorithm

∈ A
∈ V \ A

1212

55 77

∞∞ 00

1010

99

1515

6 12
5

14

3

8

10

15

9

7

u ← EXTRACT-MIN(Q)
for each v ∈ Adj[u]

do if v ∈ Q and w(u, v) < key[v]
then key[v] ← w(u, v)⊳ DECREASE-KEY

π[v] ← u

CS 5633 Analysis of Algorithms 193/24/05

Example of Prim’s algorithm

∈ A
∈ V \ A

1212

55 77

∞∞ 00

1010

99

1515

6 12
5

14

3

8

10

15

9

7

u ← EXTRACT-MIN(Q)
for each v ∈ Adj[u]

do if v ∈ Q and w(u, v) < key[v]
then key[v] ← w(u, v)⊳ DECREASE-KEY

π[v] ← u CS 5633 Analysis of Algorithms 203/24/05

Example of Prim’s algorithm

∈ A
∈ V \ A

66

55 77

1414 00

88

99

1515

6 12
5

14

3

8

10

15

9

7

u ← EXTRACT-MIN(Q)
for each v ∈ Adj[u]

do if v ∈ Q and w(u, v) < key[v]
then key[v] ← w(u, v)⊳ DECREASE-KEY

π[v] ← u

CS 5633 Analysis of Algorithms 213/24/05

Example of Prim’s algorithm

∈ A
∈ V \ A

66

55 77

1414 00

88

99

1515

6 12
5

14

3

8

10

15

9

7

u ← EXTRACT-MIN(Q)
for each v ∈ Adj[u]

do if v ∈ Q and w(u, v) < key[v]
then key[v] ← w(u, v)⊳ DECREASE-KEY

π[v] ← u CS 5633 Analysis of Algorithms 223/24/05

Example of Prim’s algorithm

∈ A
∈ V \ A

66

55 77

1414 00

88

99

1515

6 12
5

14

3

8

10

15

9

7

u ← EXTRACT-MIN(Q)
for each v ∈ Adj[u]

do if v ∈ Q and w(u, v) < key[v]
then key[v] ← w(u, v)⊳ DECREASE-KEY

π[v] ← u

CS 5633 Analysis of Algorithms 233/24/05

Example of Prim’s algorithm

∈ A
∈ V \ A

66

55 77

33 00

88

99

1515

6 12
5

14

3

8

10

15

9

7

u ← EXTRACT-MIN(Q)
for each v ∈ Adj[u]

do if v ∈ Q and w(u, v) < key[v]
then key[v] ← w(u, v)⊳ DECREASE-KEY

π[v] ← u CS 5633 Analysis of Algorithms 243/24/05

Example of Prim’s algorithm

∈ A
∈ V \ A

66

55 77

33 00

88

99

1515

6 12
5

14

3

8

10

15

9

7

u ← EXTRACT-MIN(Q)
for each v ∈ Adj[u]

do if v ∈ Q and w(u, v) < key[v]
then key[v] ← w(u, v)⊳ DECREASE-KEY

π[v] ← u

CS 5633 Analysis of Algorithms 253/24/05

Example of Prim’s algorithm

∈ A
∈ V \ A

66

55 77

33 00

88

99

1515

6 12
5

14

3

8

10

15

9

7

u ← EXTRACT-MIN(Q)
for each v ∈ Adj[u]

do if v ∈ Q and w(u, v) < key[v]
then key[v] ← w(u, v)⊳ DECREASE-KEY

π[v] ← u CS 5633 Analysis of Algorithms 263/24/05

Example of Prim’s algorithm

∈ A
∈ V \ A

66

55 77

33 00

88

99

1515

6 12
5

14

3

8

10

15

9

7

u ← EXTRACT-MIN(Q)
for each v ∈ Adj[u]

do if v ∈ Q and w(u, v) < key[v]
then key[v] ← w(u, v)⊳ DECREASE-KEY

π[v] ← u

CS 5633 Analysis of Algorithms 273/24/05

Handshaking Lemma ⇒Θ(|E|) implicit DECREASE-KEY’s.

Q ← V
key[v] ←∞ for all v ∈ V
key[s] ← 0 for some arbitrary s ∈ V
while Q ≠ ∅

do u ← EXTRACT-MIN(Q)
for each v ∈ Adj[u]

do if v ∈ Q and w(u, v) < key[v]
then key[v] ← w(u, v)

π[v] ← u

Analysis of Prim

degree(u)
times

|V |
times

Θ(|V|)
total

Time = Θ(|V|)·TEXTRACT-MIN + Θ(|E|)·TDECREASE-KEY
CS 5633 Analysis of Algorithms 283/24/05

Analysis of Prim (continued)

Time = Θ(|V|)·TEXTRACT-MIN + Θ(|E|)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total

array O(|V|) O(1) O(|V|2)
binary
heap O(log |V|) O(log |V|) O(|E| log |V|)

Fibonacci
heap

O(log |V|)
amortized

O(1)
amortized

O(|E| + |V| log |V|)
worst case

CS 5633 Analysis of Algorithms 293/24/05

Kruskal’s algorithm
IDEA (again greedy):
Repeatedly pick edge with smallest weight as long as it
does not form a cycle.

• The algorithm creates a set of trees (a forest)
• During the algorithm the added edges merge the
trees together, such that in the end only one tree
remains

• The correctness of this greedy strategy is not obvious
and needs to be proven. (Proof skipped here.)

CS 5633 Analysis of Algorithms 303/24/05

Example of Kruskal’s algorithm

aa

bb cc

ee ff

hh

dd

gg

6 12
5

14

3

8

10

15

9

7

MST edges

Every node is a single tree.

S={ {a},{b},{c},{d},{e}
{f},{g},{h} }

a set repr.

CS 5633 Analysis of Algorithms 313/24/05

Example of Kruskal’s algorithm

aa

bb cc

ee ff

hh

dd

gg

6 12
5

14

3

8

10

15

9

7

MST edges

Edge 3 merged two singleton trees.

S={ {a},{b},{c},{d},{f}
{g}, {e, h} }

a set repr.

CS 5633 Analysis of Algorithms 323/24/05

Example of Kruskal’s algorithm

aa

bb cc

ee ff

hh

dd

gg

6 12
5

14

3

8

10

15

9

7

MST edges
S={ {a},{d},{f}, {g}

{e, h}, {b, c} }
a set repr.

CS 5633 Analysis of Algorithms 333/24/05

Example of Kruskal’s algorithm

aa

bb cc

ee ff

hh

dd

gg

6 12
5

14

3

8

10

15

9

7

MST edges
S={ {d},{f}, {g}

{e, h}, {a, b, c} }
a set repr.

CS 5633 Analysis of Algorithms 343/24/05

Example of Kruskal’s algorithm

aa

bb cc

ee ff

hh

dd

gg

6 12
5

14

3

8

10

15

9

7

MST edges
S={ {d}, {g}

{e, h}, {a, b, c, f} }
a set repr.

CS 5633 Analysis of Algorithms 353/24/05

Example of Kruskal’s algorithm

aa

bb cc

ee ff

hh

dd

gg

6 12
5

14

3

8

10

15

9

7

MST edges
S={ {d}, {g}

{e, h, a, b, c, f} }

Edge 8 merged the two bigger trees.

a set repr.

CS 5633 Analysis of Algorithms 363/24/05

Example of Kruskal’s algorithm

aa

bb cc

ee ff

hh

dd

gg

6 12
5

14

3

8

10

15

9

7

MST edges
S={ {g}

{e, h, a, b, c, f, d} }
a set repr.

CS 5633 Analysis of Algorithms 373/24/05

Example of Kruskal’s algorithm

aa

bb cc

ee ff

hh

dd

gg

6 12
5

14

3

8

10

15

9

7

MST edges

Skip edge 10 as it would cause a cycle.

S={ {g}
{e, h, a, b, c, f, d} }

a set repr.

CS 5633 Analysis of Algorithms 383/24/05

Example of Kruskal’s algorithm

aa

bb cc

ee ff

hh

dd

gg

6 12
5

14

3

8

10

15

9

7

MST edges

Skip edge 12 as it would cause a cycle.

S={ {g}
{e, h, a, b, c, f, d} }

a set repr.

CS 5633 Analysis of Algorithms 393/24/05

Example of Kruskal’s algorithm

aa

bb cc

ee ff

hh

dd

gg

6 12
5

14

3

8

10

15

9

7

MST edges

Skip edge 14 as it would cause a cycle.

S={ {g}
{e, h, a, b, c, f, d} }

a set repr.

CS 5633 Analysis of Algorithms 403/24/05

Example of Kruskal’s algorithm

aa

bb cc

ee ff

hh

dd

gg

6 12
5

14

3

8

10

15

9

7

MST edges
S={{e, h, a, b, c, f, d, g} }

a set repr.

CS 5633 Analysis of Algorithms 413/24/05

Disjoint-set data structure
(Union-Find)

• Maintains a dynamic collection of pairwise-disjoint
sets S = {S1, S2, …, Sr}.

• Each set Si has one element distinguished as the
representative element.

• Supports operations:
• MAKE-SET(x): adds new set {x} to S
• UNION(x, y): replaces sets Sx, Sy with Sx ∪ Sy
• FIND-SET(x): returns the representative of the

set Sx containing element x
• 1 < α(n) < log*(n) < log(log(n)) < log(n)

O(1)
O(α(n))
O(α(n))

CS 5633 Analysis of Algorithms 423/24/05

Kruskal’s algorithm
IDEA: Repeatedly pick edge with smallest
weight as long as it does not form a cycle.

S ←∅ ⊳ S will contain all MST edges
for each v ∈V do MAKE-SET(v)
Sort edges of E in non-decreasing order according to w
For each (u,v) ∈ E taken in this order do

if FIND-SET(u) ≠ FIND-SET(v) ⊳ u,v in different trees
A ← A ∪ {(u,v)}
UNION(u,v) ⊳ Edge (u,v) connects the two trees

O(|V|)
O(|E|log|E|)

O(α(|V|))

O(|E|)

Runtime: O(|V|+|E|log|E|+|E|α(|V|)) = O(|E| log |E|)

CS 5633 Analysis of Algorithms 433/24/05

MST algorithms

• Prim’s algorithm:
• Maintains one tree
• Runs in time O(|E| log |V|), with binary heaps.

• Kruskal’s algorithm:
• Maintains a forest and uses the disjoint-set

data structure
• Runs in time O(|E| log |E|)

• Best to date: Randomized algorithm by Karger,
Klein, Tarjan [1993]. Runs in expected time

O(|V| + |E|)

