

CS 5633 -- Spring 2005

Minimum Spanning Trees

Carola Wenk

Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

3/24/05 CS 5633 Analysis of Algorithms

.3

Graphs (review)

Graphs (review

Definition. A *directed graph* (*digraph*) G = (V, E) is an ordered pair consisting of

• a set V of vertices (singular: vertex),

• a set $E \subseteq V \times V$ of **edges**.

In an *undirected graph* G = (V, E), the edge set E consists of *unordered* pairs of vertices.

In either case, we have $|E| = O(|V|^2)$. Moreover, if *G* is connected, then $|E| \ge |V| - 1$.

(Review CLRS, Appendix B.4 and B.5.)

3/24/05 CS 5633 Analysis of Algorithms

Adjacency-matrix representation

The *adjacency matrix* of a graph G = (V, E), where $V = \{1, 2, ..., n\}$, is the matrix A[1 ... n, 1 ... n] given by

given by
$$A[i,j] = \begin{cases} 1 & \text{if } (i,j) \in E, \\ 0 & \text{if } (i,j) \notin E \end{cases}$$

ALGORITHMS

Adjacency-list representation

An *adjacency list* of a vertex $v \in V$ is the list Adj[v] of vertices adjacent to v. $Adj[1] = \{2, 3\}$

For undirected graphs, |Adj[v]| = degree(v).

For digraphs, |Adj[v]| = out-degree(v).

Adjacency-list representation

Handshaking Lemma:

• For undirected graphs:

$$\sum_{v \in V} degree(v) = 2|E|$$

• For digraphs:

$$\sum_{v \in V} in\text{-}degree(v) + \sum_{v \in V} out\text{-}degree(v) = 2 \mid E \mid$$

- \Rightarrow adjacency lists use $\Theta(|V| + |E|)$ storage
- ⇒ a *sparse* representation

3/24/05 CS 5633 Analysis of Algorithms

5

Minimum spanning trees

Input: A connected, undirected graph G = (V, E) with weight function $w : E \to R$.

• For simplicity, assume that all edge weights are distinct. (CLRS covers the general case.)

Output: A *spanning tree* T— a tree that connects all vertices — of minimum weight:

$$w(T) = \sum_{(u,v)\in T} w(u,v).$$

3/24/05 CS 5633 Analysis of Algorithms

Example of MST

Hallmark for "greedy" algorithms

Greedy-choice property
A locally optimal choice
is globally optimal.

Theorem. Let T be the MST of G = (V, E), and let $A \subseteq V$. Suppose that $(u, v) \in E$ is the least-weight edge connecting A to $V \setminus A$. Then, $(u, v) \in T$.

Proof of theorem

isider the unique simple path from u to v in I

CS 5633 Analysis of Algorithms

Consider the unique simple path from u to v in T.

Swap (u, v) with the first edge on this path that

connects a vertex in A to a vertex in $V \setminus A$.

CS 5633 Analysis of Algorithms

3/24/05

Proof of theorem

3/24/05

Proof. Suppose $(u, v) \notin T$. Cut and paste.

T': (u, v) = least-weight edge (u, v) = least-weight edge (u, v) = least-weight edge

Consider the unique simple path from u to v in T. Swap (u, v) with the first edge on this path that connects a vertex in A to a vertex in $V \setminus A$.

A lighter-weight spanning tree than *T* results.

Prim's algorithm

IDEA: Maintain $V \setminus A$ as a priority queue Q. Key each vertex in Q with the weight of the leastweight edge connecting it to a vertex in A.

$$key[v] \leftarrow \infty$$
 for all $v \in V$
 $key[s] \leftarrow 0$ for some arbitrary $s \in V$
while $Q \neq \emptyset$
do $u \leftarrow \text{EXTRACT-MIN}(Q)$
for each $v \in Adj[u]$
do if $v \in Q$ and $w(u, v) < key[v]$
then $key[v] \leftarrow w(u, v)$ DECREASE-KEY

 $\pi[v] \leftarrow u$

At the end, $\{(v, \pi[v])\}$ forms the MST.

3/24/05 CS 5633 Analysis of Algorithms

Example of Prim's algorithm

 $\pi[v] \leftarrow u$ CS 5633 Analysis of Algorithms

Example of Prim's algorithm

3/24/05

13

Example of Prim's algorithm

 $\pi[v] \leftarrow u$ CS 5633 Analysis of Algorithms

3/24/05 $\pi[\nu] \leftarrow u \qquad \text{CS 5633 Analysis of Algorithms}$

3/24/05

Example of Prim's algorithm

17

Example of Prim's algorithm

 $\pi[v] \leftarrow u$ CS 5633 Analysis of Algorithms

 $u \leftarrow \text{EXTRACT-MIN}(Q)$ for each $v \in Adj[u]$ do if $v \in Q$ and w(u, v) < key[v]then $key[v] \leftarrow w(u, v) \triangleright \text{DECREASE-KEY}$ $\pi[v] \leftarrow u$ CS 5633 Analysis of Algorithms

3/24/05

Example of Prim's algorithm

21

Example of Prim's algorithm

$$u \leftarrow \text{EXTRACT-MIN}(Q)$$

for each $v \in Adj[u]$

do if $v \in Q$ and $w(u, v) < key[v]$

then $key[v] \leftarrow w(u, v) \triangleright \text{DECREASE-KEY}$
 $\pi[v] \leftarrow u$
 $CS 5633 \text{ Analysis of Algorithms}$

25

Example of Prim's algorithm $\bullet \in V \setminus A$ $u \leftarrow \text{EXTRACT-MIN}(Q)$

for each $v \in Adj[u]$ **do if** $v \in Q$ and w(u, v) < key[v]then $key[v] \leftarrow w(u, v) \triangleright DECREASE-KEY$ $\pi[v] \leftarrow u$ CS 5633 Analysis of Algorithms 3/24/05

Fibonacci $O(\log |V|)$

amortized

3/24/05

Analysis of Prim

$$\Theta(|V|) \begin{cases} Q \leftarrow V \\ key[v] \leftarrow \infty \text{ for all } v \in V \\ key[s] \leftarrow 0 \text{ for some arbitrary } s \in V \end{cases}$$

$$\text{while } Q \neq \emptyset$$

$$\text{do } u \leftarrow \text{EXTRACT-MIN}(Q)$$

$$\text{for each } v \in Adj[u]$$

$$\text{do if } v \in Q \text{ and } w(u, v) < key[v]$$

$$\text{then } key[v] \leftarrow w(u, v)$$

$$\pi[v] \leftarrow u$$

Handshaking Lemma $\Rightarrow \Theta(|E|)$ implicit Decrease-Key's.

Time = $\Theta(|V|) \cdot T_{\text{EXTRACT-MIN}} + \Theta(|E|) \cdot T_{\text{DECREASE-KeY}}$

heap

Analysis of Prim (continued)

 $Time = \Theta(|V|) \cdot T_{\text{EXTRACT-MIN}} + \Theta(|E|) \cdot T_{\text{DECREASE-KEY}}$

amortized worst case

IDEA (again greedy):

Repeatedly pick edge with smallest weight as long as it does not form a cycle.

- The algorithm creates a set of trees (a **forest**)
- During the algorithm the added edges merge the trees together, such that in the end only one tree remains
- The correctness of this greedy strategy is not obvious and needs to be proven. (Proof skipped here.)

Edge 3 merged two singleton trees.

Example of Kruskal's algorithm

Every node is a single tree.

3/24/05 CS 5633 Analysis of Algorithms

Example of Kruskal's algorithm

MST edges

set repr.

b

Example of Kruskal's algorithm

3/24/05

Example of Kruskal's algorithm

CS 5633 Analysis of Algorithms

 $S=\{ \{\underline{d}\}, \{\underline{g}\} \}$ $\{\underline{e}, h, a, b, c, f\}$ 10 Edge 8 merged the two bigger trees.

3/24/05 CS 5633 Analysis of Algorithms 37

Example of Kruskal's algorithm

Skip edge 12 as it would cause a cycle.

CS 5633 Analysis of Algorithms

ship ease 12 as it would eause a cycle

Example of Kruskal's algorithm

Skip edge 14 as it would cause a cycle.

3/24/05

Example of Kruskal's algorithm

Disjoint-set data structure (Union-Find)

- Maintains a dynamic collection of *pairwise-disjoint* sets $S = \{S_1, S_2, ..., S_r\}.$
- Each set S_i has one element distinguished as the representative element.
- Supports operations:
- MAKE-SET(x): adds new set {x} to S $O(\alpha(n)) \bullet \text{UNION}(x, y)$: replaces sets S_x , S_y with $S_x \cup S_y$
- $O(\alpha(n))$ FIND-SET(x): returns the representative of the
- set S_x containing element x $1 < \alpha(n) < \log^*(n) < \log(\log(n)) < \log(n)$

$$1 < \alpha(n) < \log^*(n) < \log(\log(n)) < \log(n)$$

3/24/05 CS 5633 Analysis of Algorithms 41

Kruskal's algorithm

IDEA: Repeatedly pick edge with smallest weight as long as it does not form a cycle.

$$S \leftarrow \varnothing \quad \triangleright S$$
 will contain all MST edges

$$O(|V|)$$
 for each $v \in V$ do Make-Set(v)

 $O(|E|\log|E|)$ Sort edges of E in non-decreasing order according to w For each $(u,v) \in E$ taken in this order do O(|E|)

For each
$$(u,v) \in E$$
 taken in this order do

$$O(\alpha(|V|)) \begin{cases} \text{if } FIND\text{-}SET(u) \neq FIND\text{-}SET(v) > u,v \text{ in different trees} \\ A \leftarrow A \cup \{(u,v)\} \end{cases}$$

$$A \leftarrow A \cup \{(u,v)\}$$

UNION $(u,v) \triangleright \text{Edge } (u,v) \text{ connects the two trees}$

Runtime:
$$O(|V|+|E|\log|E|+|E|\alpha(|V|)) = O(|E|\log|E|)$$

MST algorithms

- Prim's algorithm:
 - Maintains one tree • Runs in time $O(|E| \log |V|)$, with binary heaps.
- Kruskal's algorithm:
 - Maintains a forest and uses the disjoint-set
 - data structure • Runs in time $O(|E| \log |E|)$
- Best to date: Randomized algorithm by Karger, Klein, Tarjan [1993]. Runs in expected time O(|V| + |E|)

CS 5633 Analysis of Algorithms

3/24/05