ey | w3 table be?

ALGORITHMS Goal: Make the table as small as possible, but
large enough so that it won’t overflow (or
otherwise become inefficient).

Problem: What if we don’t know the proper size
____________ in advance?
. Solution: Dynamic tables.
Dy namic Tables IpeEA: Whenever the table overflows, “grow” it
Carola Wenk by allocating (via malloc or new) a new, larger
Slides Courtesy of Charles Leiserson with small table. Move all items from the old table into the
changes by Carola Wenk new one, and free the storage for the old table.
3/1/05 CS 5633 Analysis of Algorithms 1 3/1/05 CS 5633 Analysis of Algorithms
“ <+ Example of a dynamic table “<* Example of a dynamic table
1. INSERT 1 1. INSERT E 1
2. INSERT overflow 2. INSERT overflow

“ " Example of a dynamic table “ <" Example of a dynamic table

w w

1. INSERT D] 1. INSERT D 1]
2. INSERT 2 2. INSERT 2

3. INSERT overflow
3/1/05 CS 5633 Analysis of Algorithms 5 3/1/05 CS 5633 Analysis of Algorithms
“<* Example of a dynamic table “<* Example of a dynamic table

1. INSERT D] 1. INSERT D 1]
2. INSERT 2 2. INSERT 2

3. INSERT overflow 3. INSERT

- N « Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
4. INSERT

3/1/05

EI

=

CS 5633 Analysis of Algorithms

-lku)l\)»—“

1. INSERT
2. INSERT
3. INSERT
4. INSERT
5. INSERT

3/1/05

EI

=

CS 5633 Analysis of Algorithms

- N « Example of a dynamic table

-lku)l\)»—“

overflow

- ' « Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
4. INSERT
5. INSERT

EI

]

slwlo]—]

overflow

1. INSERT
2. INSERT
3. INSERT
4. INSERT
5. INSERT

EI

]

- ' « Example of a dynamic table

-lku)l\)»—“

."“;;--.- Example of a dynamic table

i

1. INSERT D] 1]
2. INSERT 2
3. INSERT 3
4. INSERT 4
5. INSERT 5
6. INSERT 6
7. INSERT 7
3/1/05 CS 5633 Analysis of Algorithms 13

:j;;--' Worst-case analysis

Consider a sequence of 7 insertions. The
worst-case time to execute one insertion is
O(n). Therefore, the worst-case time for »

insertions is 7 - O(n) = O(n?).

WRONG! In fact, the worst-case cost for

n insertions is only ®(n) < O(n?).

Let’s see why.

3/1/05 CS 5633 Analysis of Algorithms

.‘:‘;;‘.' Tighter analysis

Letc,= the cost of the i th insertion

i1 2 3 4 5 6 7 8 9 10
size; | 12 4 4 8 8 8 8 16 16

.‘:‘;;‘.' Tighter analysis
Letc;,= the cost of the i th insertion

= 1+ cost to double array size

D = NN
o o= W
G S A AN
D = 00 W
o = 00 O
o = 00
D = o0 OO

)
f_H]
L S Sy

16

10
16

.“";,‘-"' Tighter analysis

Letc,= the cost of the i th insertion

= 1+ cost to double array size

il1 2 3 4 5 6 7 8 9 10
size, | 1 2 4 4 8 8 8 8 16 16
. { 1 1 1 1 1 1 1 1 1 1
"o 1 2 0 4 0 0 0 8 0

.“";,‘-"' Tighter analysis

™

Letc, = the cost of the i th insertion

= 1+ cost to double array size

3/1/05 CS 5633 Analysis of Algorithms 18

ALGORITHMS

.“I

~* Tighter analysis (continued)

EE

n
Cost of n insertions = Z C;
i=1
g1 |
<n+ z 2/
j=0
<3n
=0(n).

Thus, the average cost of each dynamic-table
operation is O(n)/n = O(1).

ALGORITHM

~ & Amortized analysis

™

An amortized analysis is any strategy for
analyzing a sequence of operations:

 compute the total cost of the sequence, OR

« amortized cost of an operation = average
cost per operation, averaged over the number
of operations in the sequence

» amortized cost can be small, even though a
single operation within the sequence might be
expensive

“ ° °
“ <" Amortized analysis

Even though we’re taking averages, however,
probability is not involved!

* An amortized analysis guarantees the
average performance of each operation in
the worst case.

3/1/05 CS 5633 Analysis of Algorithms 21

i .
“«~ Types of amortized analyses

Three common amortization arguments:

* the aggregate method,

* the accounting method,
—s the potential method——

We’ve just seen an aggregate analysis.

Won’t cover in class

The aggregate method, though simple, lacks the
precision of the other two methods. In particular,
the accounting and potential methods allow a
specific amortized cost to be allocated to each
operation.

3/1/05 CS 5633 Analysis of Algorithms 22

!.H-i.l!.ul-“nh [
“ <" Accounting method

* Charge i th operation a fictitious amortized cost ¢,
where $1 pays for 1 unit of work (i.e., time).

* This fee is consumed to perform the operation, and

* any amount not immediately consumed is stored in
the bank for use by subsequent operations.

 The bank balance must not go negative! We must

ensure that
n n
D.G<28
— —
for all ». : :

* Thus, the total amortized costs provide an upper
bound on the total true costs.

@ Accounting analysis of
ey °
»* dynamic tables

Charge an amortized cost of ¢; = $3 for the i th
insertion.

* $1 pays for the immediate insertion.

* $2 1s stored for later table doubling.

When the table doubles, $1 pays to move a
recent item, and $1 pays to move an old item.
Example:

50]$0[80[$0[$2[$2[$2[$2] Overfiow

|

T AcCCoOunung analysis o1
R .
»* dynamic tables

Charge an amortized cost of ¢; = $3 for the i th

insertion.
* $1 pays for the immediate insertion.

* $2 1s stored for later table doubling.

When the table doubles, $1 pays to move a
recent item, and $1 pays to move an old item.

Example:

’ overflow

$0]$0[$0[$0[$0[$0]$0[$0

3/1/05 CS 5633 Analysis of Algorithms 25

T AcCCoOunung analysis ol
R .
»* dynamic tables

Charge an amortized cost of ¢; = $3 for the ith

insertion.
* $1 pays for the immediate insertion.

* $2 1s stored for later table doubling.

When the table doubles, $1 pays to move a
recent item, and $1 pays to move an old item.

Example:

|

50]$0]$0[$0[$0]$0]$0[80[$2[$2]$2

3/1/05 CS 5633 Analysis of Algorithms 26

¥ Accounting analysis
s .
~ 0 (continued)

Key invariant: Bank balance never drops below 0.

Thus, the sum of the amortized costs provides an
upper bound on the sum of the true costs.

i1 2 3 4 5 6 7 8 9 10
size; | 12 4 4 8 8 8 8 16 16
¢ |1 2 3 1 5 1 1 1 9 1

¢ |23 3 3 3 3 3 3 3 3
bank; | 1 2 2 4 2 4 6 8 2 4

*Okay, so I lied. The first operation costs only $2, not $3.

“<* Conclusions

» Amortized costs can provide a clean abstraction
of data-structure performance.

» Any of the analysis methods can be used when
an amortized analysis is called for, but each
method has some situations where it is arguably
the simplest.

* Different schemes may work for assigning
amortized costs in the accounting method,
sometimes yielding radically different bounds.

