
CS 5633 Analysis of Algorithms 14/26/05

CS 5633 -- Spring 2005

Augmenting Data Structures
Carola Wenk

Slides courtesy of Charles Leiserson with small
changes by Carola Wenk

CS 5633 Analysis of Algorithms 24/26/05

Dictionaries and Dynamic Sets
Abstract Data Type (ADT) Dictionary :

Insert (x, D): inserts x into D
Delete (x, D): deletes x from D
Find (x, D): finds x in D

Popular implementation uses any balanced search
tree (not necessarily binary). Like that each
operation takes O(log n) time.

D is a
dynamic set

CS 5633 Analysis of Algorithms 34/26/05

Dynamic order statistics
OS-SELECT(i, S): returns the i th smallest element

in the dynamic set S.
OS-RANK(x, S): returns the rank of x ∈ S in the

sorted order of S’s elements.

IDEA: Use a red-black tree for the set S, but keep
subtree sizes in the nodes.

key
size
key
sizeNotation for nodes:

CS 5633 Analysis of Algorithms 44/26/05

Example of an OS-tree

M
9

M
9

C
5

C
5

A
1

A
1

F
3

F
3

N
1

N
1

Q
1

Q
1

P
3

P
3

H
1

H
1

D
1

D
1

size[x] = size[left[x]] + size[right[x]] + 1

CS 5633 Analysis of Algorithms 54/26/05

Selection

OS-SELECT(x, i) ⊳ ith smallest element in the
subtree rooted at x

k ← size[left[x]] + 1 ⊳ k = rank(x)
if i = k then return x
if i < k

then return OS-SELECT(left[x], i)
else return OS-SELECT(right[x], i – k)

Implementation trick: Use a sentinel
(dummy record) for NIL such that size[NIL] = 0.

(OS-RANK is in the textbook.)
CS 5633 Analysis of Algorithms 64/26/05

Example

M
9

M
9

C
5

C
5

A
1

A
1

F
3

F
3

N
1

N
1

Q
1

Q
1

P
3

P
3

H
1

H
1

D
1

D
1

OS-SELECT(root, 5)

i = 5
k = 6

M
9

M
9

C
5

C
5

i = 5
k = 2

i = 3
k = 2

F
3

F
3

i = 1
k = 1

H
1

H
1
H
1

H
1

Running time = O(h) = O(log n) for red-black trees.

CS 5633 Analysis of Algorithms 74/26/05

Data structure maintenance
Q. Why not keep the ranks themselves

in the nodes instead of subtree sizes?

A. They are hard to maintain when the
red-black tree is modified.

Modifying operations: INSERT and DELETE.
Strategy: Update subtree sizes when
inserting or deleting.

CS 5633 Analysis of Algorithms 84/26/05

Example of insertion

M
9

M
9

C
5

C
5

A
1

A
1

F
3

F
3

N
1

N
1

Q
1

Q
1

P
3

P
3

H
1

H
1

D
1

D
1

INSERT(“K”)
M
10
M
10

C
6

C
6

F
4

F
4

H
2

H
2

K
1

K
1

CS 5633 Analysis of Algorithms 94/26/05

Handling rebalancing
Don’t forget that RB-INSERT and RB-DELETE may
also need to modify the red-black tree in order to
maintain balance.
• Recolorings: no effect on subtree sizes.
• Rotations: fix up subtree sizes in O(1) time.
Example:

C
11
C
11

E
16
E
16

7 3

4

C
16
C
16

E
8

E
87

3 4

∴RB-INSERT and RB-DELETE still run in O(log n) time.
CS 5633 Analysis of Algorithms 104/26/05

Data-structure augmentation
Methodology: (e.g., order-statistics trees)
1. Choose an underlying data structure (red-

black trees).
2. Determine additional information to be

stored in the data structure (subtree sizes).
3. Verify that this information can be

maintained for modifying operations (RB-
INSERT, RB-DELETE — don’t forget rotations).

4. Develop new dynamic-set operations that use
the information (OS-SELECT and OS-RANK).

These steps are guidelines, not rigid rules.

CS 5633 Analysis of Algorithms 114/26/05

Interval trees
Goal: To maintain a dynamic set of intervals,
such as time intervals.

low[i] = 7 10 = high[i]

i = [7, 10]

5
4 15 22

1711
8 18

19
23

Query: For a given query interval i, find an
interval in the set that overlaps i.

CS 5633 Analysis of Algorithms 124/26/05

Following the methodology

1. Choose an underlying data structure.
• Red-black tree keyed on low (left) endpoint.

int
m

int
m

2. Determine additional information to be
stored in the data structure.
• Store in each node x the largest value m[x]

in the subtree rooted at x, as well as the
interval int[x] corresponding to the key.

CS 5633 Analysis of Algorithms 134/26/05

17,19
23

17,19
23

Example interval tree

5,11
18

5,11
18

4,8
8

4,8
8

15,18
18

15,18
18

7,10
10

7,10
10

22,23
23

22,23
23

m[x] = max
high[int[x]]
m[left[x]]
m[right[x]]

CS 5633 Analysis of Algorithms 144/26/05

Modifying operations
3. Verify that this information can be maintained

for modifying operations.
• INSERT: Fix m’s on the way down.

6,20
30

6,20
30

11,15
19

11,15
19

19191414

3030

11,15
30

11,15
30

6,20
30

6,20
30

3030 1414

1919

• Rotations — Fixup = O(1) time per rotation:

Total INSERT time = O(log n); DELETE similar.

CS 5633 Analysis of Algorithms 154/26/05

New operations
4. Develop new dynamic-set operations that use

the information.
INTERVAL-SEARCH(i)

x ← root
while x ≠ NIL and (low[i] > high[int[x]]

or low[int[x]] > high[i])
do ⊳ i and int[x] don’t overlap

if left[x] ≠ NIL and low[i] ≤ m[left[x]]
then x ← left[x]
else x ← right[x]

return x

CS 5633 Analysis of Algorithms 164/26/05

Example 1: INTERVAL-SEARCH([14,16])

17,19
23

17,19
23

5,11
18

5,11
18

4,8
8

4,8
8

15,18
18

15,18
18

7,10
10

7,10
10

22,23
23

22,23
23

x

x ← root
[14,16] and [17,19] don’t overlap
14 ≤ 18 ⇒ x ← left[x]

CS 5633 Analysis of Algorithms 174/26/05

Example 1: INTERVAL-SEARCH([14,16])

17,19
23

17,19
23

5,11
18

5,11
18

4,8
8

4,8
8

15,18
18

15,18
18

7,10
10

7,10
10

22,23
23

22,23
23

x

[14,16] and [5,11] don’t overlap
14 > 8 ⇒ x ← right[x]

CS 5633 Analysis of Algorithms 184/26/05

Example 1: INTERVAL-SEARCH([14,16])

17,19
23

17,19
23

5,11
18

5,11
18

4,8
8

4,8
8

15,18
18

15,18
18

7,10
10

7,10
10

22,23
23

22,23
23

x

[14,16] and [15,18] overlap
return [15,18]

CS 5633 Analysis of Algorithms 194/26/05

Example 2: INTERVAL-SEARCH([12,14])

17,19
23

17,19
23

5,11
18

5,11
18

4,8
8

4,8
8

15,18
18

15,18
18

7,10
10

7,10
10

22,23
23

22,23
23

x

x ← root
[12,14] and [17,19] don’t overlap
12 ≤ 18 ⇒ x ← left[x]

CS 5633 Analysis of Algorithms 204/26/05

Example 2: INTERVAL-SEARCH([12,14])

17,19
23

17,19
23

5,11
18

5,11
18

4,8
8

4,8
8

15,18
18

15,18
18

7,10
10

7,10
10

22,23
23

22,23
23

x

[12,14] and [5,11] don’t overlap
12 > 8 ⇒ x ← right[x]

CS 5633 Analysis of Algorithms 214/26/05

Example 2: INTERVAL-SEARCH([12,14])

17,19
23

17,19
23

5,11
18

5,11
18

4,8
8

4,8
8

15,18
18

15,18
18

7,10
10

7,10
10

22,23
23

22,23
23

x

[12,14] and [15,18] don’t overlap
12 > 10 ⇒ x ← right[x]

CS 5633 Analysis of Algorithms 224/26/05

Example 2: INTERVAL-SEARCH([12,14])

17,19
23

17,19
23

5,11
18

5,11
18

4,8
8

4,8
8

15,18
18

15,18
18

7,10
10

7,10
10

22,23
23

22,23
23

x

x = NIL ⇒ no interval that
overlaps [12,14] exists

CS 5633 Analysis of Algorithms 234/26/05

Analysis
Time = O(h) = O(log n), since INTERVAL-
SEARCH does constant work at each level as it
follows a simple path down the tree.
List all overlapping intervals:
• Search, list, delete, repeat.
• Insert them all again at the end.

This is an output-sensitive bound.
Best algorithm to date: O(k + log n).

Time = O(k log n), where k is the total number
of overlapping intervals.

CS 5633 Analysis of Algorithms 244/26/05

Correctness
Theorem. Let L be the set of intervals in the
left subtree of node x, and let R be the set of
intervals in x’s right subtree.
• If the search goes right, then

{ i ′ ∈ L : i ′ overlaps i } = ∅.
• If the search goes left, then

{i ′ ∈ L : i ′ overlaps i } = ∅
⇒ {i ′ ∈ R : i ′ overlaps i } = ∅.

In other words, it’s always safe to take only 1
of the 2 children: we’ll either find something,
or nothing was to be found.

CS 5633 Analysis of Algorithms 254/26/05

Correctness proof
Proof. Suppose first that the search goes right.
• If left[x] = NIL, then we’re done, since L = ∅.
• Otherwise, the code dictates that we must have

low[i] > m[left[x]]. The value m[left[x]]
corresponds to the right endpoint of some
interval j ∈ L, and no other interval in L can
have a larger right endpoint than high(j).

L
high(j) = m[left[x]]

i
low(i)

• Therefore, {i ′ ∈ L : i ′ overlaps i } = ∅.
CS 5633 Analysis of Algorithms 264/26/05

Proof (continued)
Suppose that the search goes left, and assume that

{i ′ ∈ L : i ′ overlaps i } = ∅.
• Then, the code dictates that low[i] ≤ m[left[x]] =

high[j] for some j ∈ L.
• Since j ∈ L, it does not overlap i, and hence

high[i] < low[j].
• But, the binary-search-tree property implies that

for all i ′ ∈ R, we have low[j] ≤ low[i ′].
• But then {i ′ ∈ R : i ′ overlaps i } = ∅.

L

i j
i ′

