! ‘\“

i

@@ CS 5633 -- Spring 2005

ALGORITHMS

Augmenting Data Structures
Carola Wenk

Slides courtesy of Charles Leiserson with small
changes by Carola Wenk

4/26/05 CS 5633 Analysis of Algorithms 1

“«" Dictionaries and Dynamic Sets

Abstract Data Type (ADT) Dictionary :
Insert (x, D): inserts x into D } Disa
Delete (x, D): deletes x from D
Find (x, D): finds x in D

dynamic set

Popular implementation uses any balanced search
tree (not necessarily binary). Like that each
operation takes O(log n) time.

4/26/05 CS 5633 Analysis of Algorithms 2

“ <" Dynamic order statistics

OS-SELECT(Z, S): returns the /th smallest element
in the dynamic set S.

OS-RANK(x, §): returns the rank of x € S in the
sorted order of S’s elements.

IpEA: Use a red-black tree for the set S, but keep
subtree sizes in the nodes.

Notation for nodes:

.'-:!?', ¥ Example of an OS-tree

w

size[x] = size[left[x]] + size[right[x]] + 1

“w" Selection

Implementation trick: Use a sentinel
(dummy record) for NIL such that size[NiL] = 0.

OS-SELECT(x, i) ©ith smallest element in the
subtree rooted at x
k < size[left[x]] + 1 > k=rank(x)
if i =/ then return x
if i<k
then return OS-SELECT(/eft[x], 1)
else return OS-SELECT(right|x], i — k)

(OS-RANK is in the textbook.)

4/26/05 CS 5633 Analysis of Algorithms

“ " Example

OS-SELECT(root, 5)

Running time = O(/) = O(log n) for red-black trees.

4/26/05 6

CS 5633 Analysis of Algorithms

“«" Data structure maintenance

w

Q. Why not keep the ranks themselves
in the nodes instead of subtree sizes?

A. They are hard to maintain when the
red-black tree is modified.

Modifying operations: INSERT and DELETE.

Strategy: Update subtree sizes when
inserting or deleting.

<" Example of insertion

w

INSERT(“K™)

“ <" Handling rebalancing

Don’t forget that RB-INSERT and RB-DELETE may
also need to modify the red-black tree in order to
maintain balance.

* Recolorings: no effect on subtree sizes.

* Rotations: fix up subtree sizes in O(1) time.

Example: < /T
Ny :> N
4 7

7 3 3 4

. RB-INSERT and RB-DELETE still run in O(log) time.

4/26/05 CS 5633 Analysis of Algorithms 9

" Data-structure augmentation

Methodology: (e.g., order-statistics trees)

1. Choose an underlying data structure (red-
black trees).

2. Determine additional information to be
stored in the data structure (subtree sizes).

3. Verify that this information can be
maintained for modifying operations (R5-
INSERT, RB-DELETE — don’'t forget rotations).

4. Develop new dynamic-set operations that use
the information (OS-SELECT and OS-RANK).

These steps are guidelines, not rigid rules.

4/26/05 CS 5633 Analysis of Algorithms

" Interval trees

Goal: To maintain a dynamic set of intervals,
such as time intervals.

/i=[7, 10]

low[i] = 7 ~——= 10 = high][i]
5e o1 |7 e—19
[5e——e 18 20e—e23

fe—3

Query: For a given query interval 7, find an
interval in the set that overlaps i.

;;j;;:,‘ Following the methodology

1. Choose an underlying data structure.
» Red-black tree keyed on low (left) endpoint.

2. Determine additional information to be
stored in the data structure.
* Store in each node x the largest value m[x]|
in the subtree rooted at x, as well as the
interval inf[x] corresponding to the key.

“ " Example interval tree

™

; [= i
low[i] =7 = 10 = highli]

11 17 219

5

4oe——3 [5ie—=:18 2223

high[int|x]]
m[x] =max~ m[left[x]]
m(right|x]]

4/26/05 13

CS 5633 Analysis of Algorithms

“ o~ Modifying operations

™

3. Verify that this information can be maintained
for modifying operations.
* INSERT: Fix m’s on the way down.
* Rotations — Fixup = O(1) time per rotation:

< x
ey BN v B
o © @ @

Total INSERT time = O(log n); DELETE similar.

CS 5633 Analysis of Algorithms

4/26/05 14

ALGORITHM

<" New operations

w

4. Develop new dynamic-set operations that use
the information.

INTERVAL-SEARCH(/)
X < root
while x # NIL and (low[i] > high[int[x]]
or low[int[x]] > highl[i])
do > 7 and int[x] don’t overlap
if /eft[x] # NIL and low[i] < m[left[x]]
then x < /efi|x|
else x < right|x|
return x

ALGORITHM

“ <~ Example 1: Intervar-Searcu([14,16])

w

while x = NIL and (low[i] = high|int|x]]
or low|int|x]] = highli]
do =i and /nf|x] don’t overlap
if lefi[x] # NIL and low[i] < m[lefi|x
then x « lefi]x|
else x « right|x]

X < root
[14,16] and [17,19] don’t overlap
14 <18 = x <« left[x]

<" Example 1: IntervaL-SEarch([14,16])

™

while x = NIL and (low[i] = high|int|x]]
or low|int|x]] = highli])
do =i and /nf|x] don’t overlap
if lefi[x] # NIL and low[i] < m[lefi|x]]
then x « lefi]x|
else x « right|x]

[14,16] and [5,11] don’t overlap
14 > 8 = x « right|[x]

“ " Example 1: IntervaL-SEarch([14,16])

™

while x = NIL and (low[i] = high|int|x]]
or low|int|x]] = highli]
do =i and /nf|x] don’t overlap
if lefi[x] # NIL and low[i] < m[lefi|x
then x « lefi]x|
else x « right|x]

[14,16] and [15,18] overlap
return [15,18]

4/26/05 CS 5633 Analysis of Algorithms 17 4/26/05 CS 5633 Analysis of Algorithms 18
e Example 2 INTERVAL-SEARCH([12,14]) S Examp]e 2 INTERVAL-SEARCH([12,14])

while x = NIL and (low[i] = high|int|x]]
or low|int|x]] = highli])
do =i and /nf|x] don’t overlap
if lefi[x] # NIL and low[i] < m[lefi|x]]
then x « lefi]x|
else x « right|x]

X < root
[12,14] and [17,19] don’t overlap
12 <18 = x <« left|x]

while x = NIL and (low[i] = high|int|x]]
or low|int|x]] = highli]
do =i and /nf|x] don’t overlap
if lefi[x] # NIL and low[i] < m[lefi|x
then x « lefi]x|
else x « right|x]

[12,14] and [5,11] don’t overlap
12 > 8 = x « right|[x]

4/26/05

“ <~ Example 2: IntervaL-Searcu([12,14])

while x = NIL and (low[i] = high|int|x]]

or low|int|x]] = highli])
do =i and /nf|x] don’t overlap
if lefi[x] # NIL and low[i] < m[lefi|x]]

then x « Jefi|x]
else x « right|x]

[12,14] and [15,18] don’t overlap
12 > 10 = x <« right|x]

CS 5633 Analysis of Algorithms 21

4/26/05

“ <~ Example 2: IntervaL-Searcu([12,14])

while x = NIL and (low[i] = high|int|x]]

or low|int|x]] = highli]
do =i and /nf|x] don’t overlap
if lefi[x] # NIL and low[i] < m[lefi|x

then x « Jefi|x]
else x « right|x]

X

x = NIL = no interval that
overlaps [12,14] exists

CS 5633 Analysis of Algorithms 2

“ " Analysis

Time = O(/) = O(log n), since INTERVAL-
SEARCH does constant work at each level as it
follows a simple path down the tree.

List all overlapping intervals:
* Search, list, delete, repeat.

* Insert them all again at the end.
Time = O(k log n), where £ is the total number
of overlapping intervals.

This is an output-sensitive bound.
Best algorithm to date: O(k + log n).

ALGORITHM

“«" Correctness

Theorem. Let L be the set of intervals in the
left subtree of node x, and let R be the set of
intervals in x’s right subtree.
« If the search goes right, then
{i"e L:i"overlapsi } = U.

« [f the search goes left, then

{i" e L:i"overlapsi } = O

= {i'" € R:i"overlapsi | = .
In other words, it’s always safe to take only 1
of the 2 children: we’ll either find something,

or nothing was to be found.

.
<" Correctness proof

Proof. Suppose first that the search goes right.

o If [efi[x] = NIL, then we’re done, since L = .

* Otherwise, the code dictates that we must have
low[i] > m[lefi[x]]. The value m|[/eft|x]]
corresponds to the right endpoint of some
interval ;j € L, and no other interval in L can
have a larger right endpoint than Zig/h(;).

]
high(j) =m le/z‘ -/ \ low(z)

 Therefore, {i' € L :i' overlapsi | =

4/26/05

CS 5633 Analysis of Algorithms 25

"o~ Proof (continued)

Suppose that the search goes left, and assume that
{i" e L:i"overlapsi } =

* Then, the code dictates that low[i]| < m|left[x]] =
high| j] for some j € L.

* Since j € L, it does not overlap 7, and hence
high[i] < low] J].

* But, the binary-search-tree property implies that
for all i" € R, we have low[j| < low[i'].

*Butthen {i’ € R : i’ overlaps i } = . []

! J

- !

4

4/26/05 26

CS 5633 Analysis of Algorithms

