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Dictionaries and Dynamic Sets
Abstract Data Type (ADT) Dictionary :

Insert (x, D): inserts x into D
Delete (x, D): deletes x from D
Find (x, D): finds x in D

Popular implementation uses any balanced search 
tree (not necessarily binary). Like that each 
operation takes O(log n) time.

D is a 
dynamic set
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Dynamic order statistics
OS-SELECT(i, S): returns the i th smallest element 

in the dynamic set S.
OS-RANK(x, S): returns the rank of x ∈ S in the 

sorted order of S’s elements.

IDEA: Use a red-black tree for the set S, but keep 
subtree sizes in the nodes.

key
size
key
sizeNotation for nodes:
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Example of an OS-tree
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size[x] = size[left[x]] + size[right[x]] + 1
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Selection

OS-SELECT(x, i) ⊳ ith smallest element in the 
subtree rooted at x 

k ← size[left[x]] + 1 ⊳ k = rank(x)
if  i = k  then return x
if  i < k  

then return OS-SELECT( left[x], i )
else return OS-SELECT(right[x], i – k )

Implementation trick: Use a sentinel
(dummy record) for NIL such that size[NIL] = 0.

(OS-RANK is in the textbook.)
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Example
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OS-SELECT(root, 5)

i = 5
k = 6
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Running time = O(h) = O(log n) for red-black trees.

CS 5633 Analysis of Algorithms 74/26/05

Data structure maintenance
Q. Why not keep the ranks themselves 

in the nodes instead of subtree sizes?

A. They are hard to maintain when the 
red-black tree is modified.

Modifying operations: INSERT and DELETE.
Strategy: Update subtree sizes when 
inserting or deleting.
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Example of insertion
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Handling rebalancing
Don’t forget that RB-INSERT and RB-DELETE may 
also need to modify the red-black tree in order to 
maintain balance.
• Recolorings: no effect on subtree sizes.
• Rotations: fix up subtree sizes in O(1) time.
Example:
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∴RB-INSERT and RB-DELETE still run in O(log n) time.
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Data-structure augmentation
Methodology: (e.g., order-statistics trees)
1. Choose an underlying data structure (red-

black trees).
2. Determine additional information to be 

stored in the data structure (subtree sizes).
3. Verify that this information can be 

maintained for modifying operations (RB-
INSERT, RB-DELETE — don’t forget rotations).

4. Develop new dynamic-set operations that use 
the information (OS-SELECT and OS-RANK).

These steps are guidelines, not rigid rules.
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Interval trees
Goal: To maintain a dynamic set of intervals, 
such as time intervals.

low[i] = 7 10 = high[i]

i = [7, 10]

5
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1711
8 18
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23

Query: For a given query interval i, find an 
interval in the set that overlaps i.
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Following the methodology

1. Choose an underlying data structure.
• Red-black tree keyed on low (left) endpoint.

int
m

int
m

2. Determine additional information to be 
stored in the data structure.
• Store in each node x the largest value m[x]

in the subtree rooted at x, as well as the 
interval int[x] corresponding to the key.
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m[x] = max
high[int[x]]
m[left[x]]
m[right[x]]
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Modifying operations
3. Verify that this information can be maintained 

for modifying operations.
• INSERT: Fix m’s on the way down.
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• Rotations — Fixup = O(1) time per rotation:

Total INSERT time = O(log n); DELETE similar.
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New operations
4. Develop new dynamic-set operations that use 

the information.
INTERVAL-SEARCH(i)

x ← root
while x ≠ NIL and (low[i] > high[int[x]] 

or low[int[x]] > high[i])
do ⊳ i and int[x] don’t overlap

if left[x] ≠ NIL and low[i] ≤ m[left[x]]
then x ← left[x]
else x ← right[x]

return x
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Example 1: INTERVAL-SEARCH([14,16])
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x ← root
[14,16] and [17,19] don’t overlap
14 ≤ 18 ⇒ x ← left[x]
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Example 1: INTERVAL-SEARCH([14,16])
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[14,16] and [5,11] don’t overlap
14 > 8 ⇒ x ← right[x]
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Example 1: INTERVAL-SEARCH([14,16])
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[14,16] and [15,18] overlap
return [15,18]
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Example 2: INTERVAL-SEARCH([12,14])
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x ← root
[12,14] and [17,19] don’t overlap
12 ≤ 18 ⇒ x ← left[x]
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Example 2: INTERVAL-SEARCH([12,14])
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[12,14] and [5,11] don’t overlap
12 > 8 ⇒ x ← right[x]
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Example 2: INTERVAL-SEARCH([12,14])
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[12,14] and [15,18] don’t overlap
12 > 10 ⇒ x ← right[x]
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Example 2: INTERVAL-SEARCH([12,14])
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x = NIL ⇒ no interval that 
overlaps [12,14] exists
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Analysis
Time = O(h) = O(log n), since INTERVAL-
SEARCH does constant work at each level as it 
follows a simple path down the tree.
List all overlapping intervals:
• Search, list, delete, repeat.
• Insert them all again at the end.

This is an output-sensitive bound.
Best algorithm to date: O(k + log n).

Time = O(k log n), where k is the total number 
of overlapping intervals.
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Correctness
Theorem.  Let L be the set of intervals in the 
left subtree of node x, and let R be the set of 
intervals in x’s right subtree.
• If the search goes right, then

{ i ′ ∈ L : i ′ overlaps i } = ∅.
• If the search goes left, then

{i ′ ∈ L : i ′ overlaps i } = ∅
⇒ {i ′ ∈ R : i ′ overlaps i } = ∅.

In other words, it’s always safe to take only 1
of the 2 children: we’ll either find something, 
or nothing was to be found.
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Correctness proof
Proof. Suppose first that the search goes right.  
• If left[x] = NIL, then we’re done, since L = ∅. 
• Otherwise, the code dictates that we must have 

low[i] > m[left[x]].  The value m[left[x]]
corresponds to the right endpoint of some 
interval j ∈ L, and no other interval in L can 
have a larger right endpoint than high( j).

L
high( j) = m[left[x]]

i
low(i)

• Therefore, {i ′ ∈ L : i ′ overlaps i } = ∅.
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Proof (continued)
Suppose that the search goes left, and assume that

{i ′ ∈ L : i ′ overlaps i } = ∅.
• Then, the code dictates that low[i] ≤ m[left[x]] = 

high[ j] for some j ∈ L.
• Since  j ∈ L, it does not overlap i, and hence 

high[i] < low[ j].
• But, the binary-search-tree property implies that 

for all i ′ ∈ R, we have low[ j] ≤ low[i ′].
• But then {i ′ ∈ R : i ′ overlaps i } = ∅.

L

i j
i ′


