B (55633 -- Spring 2005 “ <" ADT Dictionary / Dynamic Set

s
ALGORITHMS Abstract data type (ADT) Dictionary
m (also called Dynamic Set):
s A data structure which supports operations
s
o * Insert

\\\‘ ‘ Nse

Red-black trees * Find
Carola Wenk Using balanced binary search trees we can

implement a dictionary data structure such that

Slides courtesy of Charles Leiserson with small each operation takes O(log 1) time.
changes by Carola Wenk
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“«" Balanced search trees “<" Red-black trees
Balanced search tree: A search-tree data This data structure requires an extra one-
structure for which a height of O(log n) is bit color field in each node.
guaranteed when implementing a dynamic Red-black properties:
set of 72 items. 1. Every node is either red or black.
* AVL trees 2. The root 1s black.
* 2-3 trees 3. The leaves (NIL’s) are black.
Examples: * 2-3-4 trees 4. If a node is red, then both its children are black.
* B-trees 5. All simple paths from any node x to a

* Red-black trees descendant leaf have the same number of black

nodes = black-height(x).




“«" Example of a red-black tree

NIL

NIL NIL NIL NIL

NIL NIL
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“«" Example of a red-black tree

NIL

NIL NIL NIL NIL

NIL NIL

1. Every node is either red or black.
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“«" Example of a red-black tree

NIL

NIL NIL NIL NIL

NIL NIL

2., 3. The root and leaves (NIL’s) are black.

“«" Example of a red-black tree

NIL

NIL NIL NIL NIL

NIL NIL

4. If a node is red, then both its children are
black.



“«* Example of a red-black tree

NIL  NIL

bh=1

bh=1

bh=0 NIL NIL NIL NIL NIL NIL

5. All simple paths from any node x to a

descendant leaf have the same number of
black nodes = black-height(x).
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“.«" Height of a red-black tree

Theorem. A red-black tree with 7 keys has height
h<2log(n+1).

Proof. (The book uses induction. Read carefully.)

INTUITION:

* Merge red nodes
into their black
parents.
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“<" Height of a red-black tree

Theorem. A red-black tree with n keys has height
h <2 log(n+1).

Proof. (The book uses induction. Read carefully.)

INTUITION: ]
* Merge red nodes '
into their black l

parents.

* This process produces a tree in which each node
has 2, 3, or 4 children.

* The 2-3-4 tree has uniform depth /2’ of leaves.

“ <" Proof (continued)

* We have
h' > h/2, since
at most half h
the leaves on any path
are red.

* The number of leaves
ineachtreeisn + 1 I
=>n+1>2" L'
= log(n+1)>h'">h/2 l
= h<2log(n+1). O



<" Query operations

Corollary. The queries SEARCH, MIN,
MAX, SUCCESSOR, and PREDECESSOR
all run in O(log n) time on a red-black
tree with 7 nodes.
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“«" Modifying operations

The operations INSERT and DELETE cause
modifications to the red-black tree:

* the operation itself,
* color changes,

* restructuring the links of the tree via
“rotations”.
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<" Rotations

@ RIGHT-ROTATE(B)

Rotations maintain the inorder ordering of keys:
caca,beP,cey >asA<b<B<c.

A rotation can be performed in O(1) time.

“.~" Insertion into a red-black tree

IDEA: Insert x in tree. Color x red. Only red-
black property 4 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

Example:




'.:'“ o °
" Insertion into a red-black tree

IDEA: Insert x in tree. Color x red. Only red-
black property 4 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

Example:
e Insert x =15.

* Recolor, moving the
violation up the tree.
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’.:“ L] L]
" Insertion into a red-black tree

IDEA: Insert x in tree. Color x red. Only red-
black property 4 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

Example:

e Insert x =15.

* Recolor, moving the
violation up the tree.

* RIGHT-ROTATE(18).
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’\‘I".I”“Im“ o o
" Insertion into a red-black tree

w

IDEA: Insert x in tree. Color x red. Only red-
black property 4 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

Example:
e Insert x =15.

* Recolor, moving the
violation up the tree.

* RIGHT-ROTATE(18).
* LEFT-ROTATE(7) and recolor.

’\‘I".I”“Im“ o L]
" Insertion into a red-black tree

w

IDEA: Insert x in tree. Color x red. Only red-
black property 4 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

Example:
e Insert x =15.

* Recolor, moving the
violation up the tree.

* RIGHT-ROTATE(18).
* LEFT-ROTATE(7) and recolor.




“ o Pseudocode

RB-INSERT(7, x)
TREE-INSERT(7, x)
color[x] <-= RED > only RB property 4 can be violated
while x # root[ T| and color[p[x]] = RED
do if p[x] = lefi[p[p[x]]
then y < right[p|p[x]] > y = aunt/uncle of x
if color[y] = RED
then (Case 1)
else if x = right|p|x]]
then (Case 2) > Case 2 falls into Case 3
(Case 3)
else (“then” clause with “left” and “right” swapped)
color[root|T|] <~ BLACK
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" “!\, . Graphical notation

Let Adenote a subtree with a black root.

All A’ s have the same black-height.
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.‘:“!ﬂ"! Case 1

Recolor

Push C’s black onto
A and D, and recurse,

since C’s parent may
be red.

(Or, children of
A are swapped.)

N“ﬁ Case 2

LEFT-ROTATE(A)

Transform to Case 3.



“o~ Case3 o Analysis

™

RIGHT-ROTATE(C) * Go up the tree performing Case 1, which only

Yy recolors nodes.

* If Case 2 or Case 3 occurs, perform | or 2
rotations, and terminate.

Running time: O(log n) with O(1) rotations.
Done! No more
violations of RB
property 4 are
possible.

RB-DELETE — same asymptotic running time
and number of rotations as RB-INSERT (see
textbook).
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