
CS 5633 Analysis of Algorithms 12/17/05

CS 5633 -- Spring 2005

Order Statistics
Carola Wenk

Slides courtesy of Charles Leiserson with small
changes by Carola Wenk

CS 5633 Analysis of Algorithms 22/17/05

Order statistics
Select the ith smallest of n elements (the
element with rank i).
• i = 1: minimum;
• i = n: maximum;
• i = (n+1)/2 or (n+1)/2: median.

Naive algorithm: Sort and index ith element.
Worst-case running time = Θ(n log n) + Θ(1)

= Θ(n log n),
using merge sort or heapsort (not quicksort).

CS 5633 Analysis of Algorithms 32/17/05

Randomized divide-and-
conquer algorithm

RAND-SELECT(A, p, q, i) ⊳ ith smallest of A[p . . q]
if p = q then return A[p]
r ← RAND-PARTITION(A, p, q)
k ← r – p + 1 ⊳ k = rank(A[r])
if i = k then return A[r]
if i < k

then return RAND-SELECT(A, p, r – 1, i)
else return RAND-SELECT(A, r + 1, q, i – k)

≤ A[r]≤ A[r] ≥ A[r]≥ A[r]
rp q

k

CS 5633 Analysis of Algorithms 42/17/05

Example

pivot
i = 766 1010 1313 55 88 33 22 1111

k = 4

Select the 7 – 4 = 3rd smallest recursively.

Select the i = 7th smallest:

22 55 33 66 88 1313 1010 1111
Partition:

CS 5633 Analysis of Algorithms 52/17/05

Intuition for analysis

Lucky:
101log 9/10 == nn

CASE 3
T(n) = T(9n/10) + Θ(n)

= Θ(n)
Unlucky:

T(n) = T(n – 1) + Θ(n)
= Θ(n2)

arithmetic series

Worse than sorting!

(All our analyses today assume that all elements
are distinct.)

CS 5633 Analysis of Algorithms 62/17/05

Analysis of expected time

Let T(n) = the random variable for the running
time of RAND-SELECT on an input of size n,
assuming random numbers are independent.
For k = 0, 1, …, n–1, define the indicator
random variable

Xk =
1 if PARTITION generates a k : n–k–1 split,
0 otherwise.

The analysis follows that of randomized
quicksort, but it’s a little different.

CS 5633 Analysis of Algorithms 72/17/05

Analysis (continued)

T(n) =

T(max{0, n–1}) + Θ(n) if 0 : n–1 split,
T(max{1, n–2}) + Θ(n) if 1 : n–2 split,

M
T(max{n–1, 0}) + Θ(n) if n–1 : 0 split,

()∑
−

=
Θ+−−=

1

0
)(})1,(max{

n

k
k nknkTX .

To obtain an upper bound, assume that the ith
element always falls in the larger side of the
partition:

CS 5633 Analysis of Algorithms 82/17/05

Calculating expectation
()








Θ+−−= ∑

−

=

1

0
)(})1,(max{)]([

n

k
k nknkTXEnTE

Take expectations of both sides.

CS 5633 Analysis of Algorithms 92/17/05

Calculating expectation
()

()[]∑

∑
−

=

−

=

Θ+−−=









Θ+−−=

1

0

1

0

)(})1,(max{

)(})1,(max{)]([

n

k
k

n

k
k

nknkTXE

nknkTXEnTE

Linearity of expectation.

CS 5633 Analysis of Algorithms 102/17/05

Calculating expectation
()

()[]

[] []∑

∑

∑

−

=

−

=

−

=

Θ+−−⋅=

Θ+−−=









Θ+−−=

1

0

1

0

1

0

)(})1,(max{

)(})1,(max{

)(})1,(max{)]([

n

k
k

n

k
k

n

k
k

nknkTEXE

nknkTXE

nknkTXEnTE

Independence of Xk from other random
choices.

CS 5633 Analysis of Algorithms 112/17/05

Calculating expectation
()

()[]

[] []

[] ∑∑

∑

∑

∑

−

=

−

=

−

=

−

=

−

=

Θ+−−=

Θ+−−⋅=

Θ+−−=









Θ+−−=

1

0

1

0

1

0

1

0

1

0

)(1})1,(max{1

)(})1,(max{

)(})1,(max{

)(})1,(max{)]([

n

k

n

k

n

k
k

n

k
k

n

k
k

n
n

knkTE
n

nknkTEXE

nknkTXE

nknkTXEnTE

Linearity of expectation; E[Xk] = 1/n .

CS 5633 Analysis of Algorithms 122/17/05

Calculating expectation
()

()[]

[] []

[]

[]
 

)()(2

)(1})1,(max{1

)(})1,(max{

)(})1,(max{

)(})1,(max{)]([

1

2/

1

0

1

0

1

0

1

0

1

0

nkTE
n

n
n

knkTE
n

nknkTEXE

nknkTXE

nknkTXEnTE

n

nk

n

k

n

k

n

k
k

n

k
k

n

k
k

Θ+≤

Θ+−−=

Θ+−−⋅=

Θ+−−=









Θ+−−=

∑

∑∑

∑

∑

∑

−

=

−

=

−

=

−

=

−

=

−

=

Upper terms
appear twice.

CS 5633 Analysis of Algorithms 132/17/05

Hairy recurrence

[]
 

)()(2)]([
1

2/
nkTE

n
nTE

n

nk
Θ+= ∑

−

=

Prove: E[T(n)] ≤ cn for constant c > 0 .

Use fact:
 

2
1

2/
8
3nk

n

nk
∑
−

=
≤ (exercise).

• The constant c can be chosen large enough
so that E[T(n)] ≤ cn for the base cases.

(But not quite as hairy as the quicksort one.)

CS 5633 Analysis of Algorithms 142/17/05

Substitution method

[]
 

)(2)(
1

2/
nck

n
nTE

n

nk
Θ+≤ ∑

−

=

Substitute inductive hypothesis.

CS 5633 Analysis of Algorithms 152/17/05

Substitution method

[]
 

)(
8
32

)(2)(

2

1

2/

nn
n
c

nck
n

nTE
n

nk

Θ+




≤

Θ+≤ ∑
−

=

Use fact.

CS 5633 Analysis of Algorithms 162/17/05

Substitution method

Express as desired – residual.

[]
 






 Θ−−=

Θ+




≤

Θ+≤ ∑
−

=

)(
4

)(
8
32

)(2)(

2

1

2/

ncncn

nn
n
c

nck
n

nTE
n

nk

CS 5633 Analysis of Algorithms 172/17/05

Substitution method

[]
 

cn

ncncn

nn
n
c

nck
n

nTE
n

nk

≤






 Θ−−=

Θ+




≤

Θ+≤ ∑
−

=

)(
4

)(
8
32

)(2)(

2

1

2/

if c is chosen large enough so
that cn/4 dominates the Θ(n).

,

CS 5633 Analysis of Algorithms 182/17/05

Summary of randomized
order-statistic selection

• Works fast: linear expected time.
• Excellent algorithm in practice.
• But, the worst case is very bad: Θ(n2).

Q. Is there an algorithm that runs in linear
time in the worst case?

IDEA: Generate a good pivot recursively.

A. Yes, due to Blum, Floyd, Pratt, Rivest,
and Tarjan [1973].

CS 5633 Analysis of Algorithms 192/17/05

Worst-case linear-time order
statistics

if i = k then return x
elseif i < k

then recursively SELECT the ith
smallest element in the lower part

else recursively SELECT the (i–k)th
smallest element in the upper part

SELECT(i, n)
1. Divide the n elements into groups of 5. Find

the median of each 5-element group by rote.
2. Recursively SELECT the median x of the n/5

group medians to be the pivot.
3. Partition around the pivot x. Let k = rank(x).
4.

Same as
RAND-
SELECT

CS 5633 Analysis of Algorithms 202/17/05

Choosing the pivot

CS 5633 Analysis of Algorithms 212/17/05

Choosing the pivot

1. Divide the n elements into groups of 5.

CS 5633 Analysis of Algorithms 222/17/05

Choosing the pivot

lesser

greater

1. Divide the n elements into groups of 5. Find
the median of each 5-element group by rote.

CS 5633 Analysis of Algorithms 232/17/05

Choosing the pivot

lesser

greater

1. Divide the n elements into groups of 5. Find
the median of each 5-element group by rote.

2. Recursively SELECT the median x of the n/5
group medians to be the pivot.

x

CS 5633 Analysis of Algorithms 242/17/05

Analysis

lesser

greater

x

At least half the group medians are ≤ x, which
is at least  n/5 /2 = n/10 group medians.

CS 5633 Analysis of Algorithms 252/17/05

Analysis

lesser

greater

x

At least half the group medians are ≤ x, which
is at least  n/5 /2 = n/10 group medians.
• Therefore, at least 3 n/10 elements are ≤ x.

(Assume all elements are distinct.)

CS 5633 Analysis of Algorithms 262/17/05

Analysis

lesser

greater

x

At least half the group medians are ≤ x, which
is at least  n/5 /2 = n/10 group medians.
• Therefore, at least 3 n/10 elements are ≤ x.
• Similarly, at least 3 n/10 elements are ≥ x.

(Assume all elements are distinct.)

CS 5633 Analysis of Algorithms 272/17/05

Minor simplification
• For n ≥ 50, we have 3 n/10 ≥ n/4.
• Therefore, for n ≥ 50 the recursive call to

SELECT in Step 4 is executed recursively
on ≤ 3n/4 elements.

• Thus, the recurrence for running time
can assume that Step 4 takes time
T(3n/4) in the worst case.

• For n < 50, we know that the worst-case
time is T(n) = Θ(1).

CS 5633 Analysis of Algorithms 282/17/05

Developing the recurrence

if i = k then return x
elseif i < k

then recursively SELECT the ith
smallest element in the lower part

else recursively SELECT the (i–k)th
smallest element in the upper part

SELECT(i, n)
1. Divide the n elements into groups of 5. Find

the median of each 5-element group by rote.
2. Recursively SELECT the median x of the n/5

group medians to be the pivot.
3. Partition around the pivot x. Let k = rank(x).
4.

T(n)

Θ(n)

T(n/5)
Θ(n)

T(3n/4)

CS 5633 Analysis of Algorithms 292/17/05

Solving the recurrence
)(

4
3

5
1)(nnTnTnT Θ+





+





=

if c is chosen large enough to handle both the
Θ(n) and the initial conditions.

cn

ncncn

ncn

ncncnnT

≤






 Θ−−=

Θ+=

Θ++≤

)(
20
1

)(
20
19

)(
4
3

5
1)(

,

Substitution:
T(n) ≤ cn

CS 5633 Analysis of Algorithms 302/17/05

Conclusions
• Since the work at each level of recursion

is a constant fraction (19/20) smaller, the
work per level is a geometric series
dominated by the linear work at the root.

• In practice, this algorithm runs slowly,
because the constant in front of n is large.

• The randomized algorithm is far more
practical.

Exercise: Try to divide into groups of 3 or 7.

