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Order statistics
Select the ith smallest of n elements (the 
element with rank i).
• i = 1: minimum;
• i = n: maximum;
• i = (n+1)/2 or (n+1)/2: median.

Naive algorithm: Sort and index ith element.
Worst-case running time = Θ(n log n) + Θ(1)

= Θ(n log n),
using merge sort or heapsort (not quicksort).
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Randomized divide-and-
conquer algorithm

RAND-SELECT(A, p, q, i) ⊳ ith smallest of A[p . . q] 
if p = q  then return A[p]
r ← RAND-PARTITION(A, p, q)
k ← r – p + 1 ⊳ k = rank(A[r])
if  i = k  then return A[r]
if  i < k  

then return RAND-SELECT(A, p, r – 1, i )
else return RAND-SELECT(A, r + 1, q, i – k )

≤ A[r]≤ A[r] ≥ A[r]≥ A[r]
rp q

k
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Example

pivot
i = 766 1010 1313 55 88 33 22 1111

k = 4

Select the 7 – 4 = 3rd smallest recursively.

Select the i = 7th smallest:

22 55 33 66 88 1313 1010 1111
Partition:
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Intuition for analysis

Lucky:
101log 9/10 == nn

CASE 3
T(n) = T(9n/10) + Θ(n)

= Θ(n)
Unlucky:

T(n) = T(n – 1) + Θ(n)
= Θ(n2)

arithmetic series

Worse than sorting!

(All our analyses today assume that all elements 
are distinct.)
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Analysis of expected time

Let T(n) = the random variable for the running 
time of RAND-SELECT on an input of size n, 
assuming random numbers are independent.
For k = 0, 1, …, n–1, define the indicator 
random variable

Xk =
1 if PARTITION generates a k : n–k–1 split,
0 otherwise.

The analysis follows that of randomized 
quicksort, but it’s a little different.
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Analysis (continued)

T(n) = 

T(max{0, n–1}) + Θ(n) if 0 : n–1 split,
T(max{1, n–2}) + Θ(n) if 1 : n–2 split,

M
T(max{n–1, 0}) + Θ(n) if n–1 : 0 split,
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To obtain an upper bound, assume that the ith 
element always falls in the larger side of the 
partition:
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Calculating expectation
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Take expectations of both sides.
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Calculating expectation
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Linearity of expectation.
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Calculating expectation
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Independence of Xk from other random 
choices.
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Calculating expectation
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Linearity of expectation; E[Xk] = 1/n .
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Calculating expectation
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Upper terms 
appear twice.
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Hairy recurrence
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• The constant c can be chosen large enough 
so that E[T(n)] ≤ cn for the base cases.

(But not quite as hairy as the quicksort one.)
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Substitution method
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Substitute inductive hypothesis.
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Substitution method
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Substitution method

Express as desired – residual.
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Substitution method
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if c is chosen large enough so 
that cn/4 dominates the Θ(n).

,
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Summary of randomized 
order-statistic selection

• Works fast: linear expected time.
• Excellent algorithm in practice.
• But, the worst case is very bad: Θ(n2).

Q. Is there an algorithm that runs in linear 
time in the worst case?

IDEA: Generate a good pivot recursively.

A. Yes, due to Blum, Floyd, Pratt, Rivest, 
and Tarjan [1973].
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Worst-case linear-time order 
statistics

if  i = k then return x
elseif  i < k 

then recursively SELECT the ith 
smallest element in the lower part

else recursively SELECT the (i–k)th 
smallest element in the upper part

SELECT(i, n)
1. Divide the n elements into groups of 5.  Find 

the median of each 5-element group by rote.
2. Recursively SELECT the median x of the n/5

group medians to be the pivot.
3. Partition around the pivot x.  Let k = rank(x).
4.

Same as 
RAND-
SELECT
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Choosing the pivot
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Choosing the pivot

1. Divide the n elements into groups of 5.
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Choosing the pivot

lesser

greater

1. Divide the n elements into groups of 5.  Find 
the median of each 5-element group by rote.
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Choosing the pivot

lesser

greater

1. Divide the n elements into groups of 5.  Find 
the median of each 5-element group by rote.

2. Recursively SELECT the median x of the n/5
group medians to be the pivot.

x
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Analysis

lesser

greater

x

At least half the group medians are ≤ x, which 
is at least  n/5 /2 = n/10 group medians. 
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Analysis

lesser

greater

x

At least half the group medians are ≤ x, which 
is at least  n/5 /2 = n/10 group medians.
• Therefore, at least 3 n/10 elements are ≤ x.

(Assume all elements are distinct.)
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Analysis

lesser

greater

x

At least half the group medians are ≤ x, which 
is at least  n/5 /2 = n/10 group medians.
• Therefore, at least 3 n/10 elements are ≤ x.
• Similarly, at least 3 n/10 elements are ≥ x.

(Assume all elements are distinct.)
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Minor simplification
• For n ≥ 50, we have 3 n/10 ≥ n/4.
• Therefore, for n ≥ 50 the recursive call to 

SELECT in Step 4 is executed recursively 
on ≤ 3n/4 elements.

• Thus, the recurrence for running time 
can assume that Step 4 takes time 
T(3n/4) in the worst case.

• For n < 50, we know that the worst-case 
time is T(n) = Θ(1).
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Developing the recurrence

if  i = k then return x
elseif  i < k 

then recursively SELECT the ith 
smallest element in the lower part

else recursively SELECT the (i–k)th 
smallest element in the upper part

SELECT(i, n)
1. Divide the n elements into groups of 5.  Find 

the median of each 5-element group by rote.
2. Recursively SELECT the median x of the n/5

group medians to be the pivot.
3. Partition around the pivot x.  Let k = rank(x).
4.

T(n)

Θ(n)

T(n/5)
Θ(n)

T(3n/4)
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Solving the recurrence
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Substitution:
T(n) ≤ cn
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Conclusions
• Since the work at each level of recursion 

is a constant fraction (19/20) smaller, the 
work per level is a geometric series 
dominated by the linear work at the root.

• In practice, this algorithm runs slowly, 
because the constant in front of n is large.

• The randomized algorithm is far more 
practical.

Exercise: Try to divide into groups of 3 or 7.


