||||||||||||||

g CS 5633 -- Spring 2005 @ Order statistics

Y
et e Select the ith smallest of 7 elements (the
element with rank 7).

* = 1: minimum;

* [= n: maximum,

«i=|(nt1)2]) or| (n+1)/2 |: median.

Order Statistics Naive algorithm: Sort and index ith element.
Carola Wenk Worst-case running time = O(n log n) + O(1)
= O(n log n),

’ : : ' .
Slides courtesy of Charles Leiserson with small using merge sort or heapsort (nof quicksort).

changes by Carola Wenk
2/17/05 CS 5633 Analysis of Algorithms 1 2/17/05 CS 5633 Analysis of Algorithms
w# Randomized divide-and- g """""""" Example
o conquer algorlthm S P
RAND-SELECT(4, p, ¢, i) > ith smallest of A[p..¢] Select the 7 = 7th smallest:
if p =g then return A|p]|
r <— RAND-PARTITION(A4, p, q) 6 10113 5|8 |3 |2 |11] i=7
k<«—r—p+1 > k = rank(A[r]) ot
if i=/ then return 4| r] pwo
if i<k : Partition:
then return RAND-SELECT(A4, p, r— 1, i)
else return RAND-SELECT(A4, r + 1, g, i — k) 215136 |8 |13|10]11]) A=4
k N ~ Y,
< Alr] > Alr] Select the 7 — 4 = 3rd smallest recursively.

“"!' ¥ Intuition for analysis

(All our analyses today assume that all elements
are distinct.)

Lucky:
T(n) = T(9n/10) + O(n) nlogonl = 50 =1
= 0O(n) CASE 3
Unlucky:
T(n)=T(n—1)+ O(n) arithmetic series
= 0O(n?)

Worse than sorting!

2/17/05 CS 5633 Analysis of Algorithms

“"" = Analysis of expected time

The analysis follows that of randomized
quicksort, but it’s a little different.

Let 7(n) = the random variable for the running
time of RAND-SELECT on an input of size 7,
assuming random numbers are independent.

For k=0, 1, ..., n—1, define the indicator
random variable

B { 1 if PARTITION generates a k : n—k—1 split,
X, =)
0 otherwise.

2/17/05 CS 5633 Analysis of Algorithms

“'" - Analysis (continued)

To obtain an upper bound, assume that the ith
element always falls in the larger side of the
partition:

T(max {0, n—1})+ O(n) 1f0:n-1 split,
T(max{l, n—2})+ O(n) if 1 :n-2 split,

T(n)=

T(max{n—1,0})+ O(n) ifn—1:0 split,

n—l
= > X (T(max{k,n—k —1})+O(n)).
k=0

' Calculating expectation

E[T(n)]= FZIXA(T(max{kn k — 11)+®(n))}

k=0

Take expectations of both sides.

||||||||||||||

'%E, Calculating expectation

E[T(n)]= rzl)(k T'(max{k,n—k—1})+®(n))}

[Xk(T(max{kn k—1})+0(n))]

||M|

Linearity of expectation.

2/17/05 CS 5633 Analysis of Algorithms

||||||||||||||

'%E, Calculating expectation

E[T(n)]= {HZ:IXk(T(maX{k n—k—1})+ ®(n))}
k=0
= nz_:lE[Xk (T(max {k,n -k —1}) + O(n))]
k=0
= nfE[Xk]- E[T(max{k,n—k—1})+O(n)]
k=0

Independence of X, from other random
choices.

2/17/05 CS 5633 Analysis of Algorithms

||||||||||||||

ﬁ Calculating expectation

E[T(n)]= EerXk (T(max {k,n—k —1}) + ®(n))}
k=0
= S LY (T max thon—k—13) + ©(n)]
k=0
=S B] BT (max thon — k 1)+ ©(n)]
k=0

n—1 n—1

IZE[T(max{kn k- 1})]+ Z@(n)

Linearity of expectation; £[.X,| = 1/n.

||||||||||||||

ﬁ Calculating expectation

E[T(n)] = rzl)(k(T(max{kn k- 11)+®(n))}
k=0
n—1

= ¥ E[X,(T(max {k,n — k —1}) + ©(n))]

k=0

= nfE[Xk] - E[T(max {k,n—k —1}) + O(n)]
k=0
=1 nZlE[T(max{k n—k-1p)]+1 Z@(n)
) nizo
2 5

) k_%i[T(k 1+ Upper terms

appear twice.

'“ Hairy recurrence

(But not quite as hairy as the quicksort one.)

E[T(n)]= ZE[T(k) +0(n)
k= |n/2]
Prove: E[T(n)] < cn for constant ¢ > 0.

* The constant ¢ can be chosen large enough
so that £[7(n)] < cn for the base cases.

Use fact: Zk < *”2 (exercise).
k=|n/2]

2/17/05 CS 5633 Analysis of Algorithms 13

SN Substitution method

E[T(n)]<?2 Z ck +O(n)
k= |n/2]

Substitute inductive hypothesis.

2/17/05 CS 5633 Analysis of Algorithms

F71 Substitution method

i

E[T(n)]< 2 Z ck + O(n)
k= |n/2]

< 2;'@;42) +0(n)

Use fact.

F71 Substitution method

i

E[T(n)]<?2 Z ck +O(n)
k= |n/2]

< 26'@;42) +O(n)

n

=cn— (CZ‘ - @(n))

Express as desired — residual.

FZY Substitution method

n—l
E[Tm]<? > ck+0O(n)
"k={n/2]

< 2’;‘@;72) +0(n)

=cn-— (CX — G)(n))

<cn,

if ¢ 1s chosen large enough so
that cn/4 dominates the O(n).

2/17/05 CS 5633 Analysis of Algorithms 17

@ Summary of randomized

i \“ ° . .

= order-statistic selection
* Works fast: linear expected time.

* Excellent algorithm in practice.
* But, the worst case is very bad: ®(n?).

0. Is there an algorithm that runs in linear
time in the worst case?

A. Yes, due to Blum, Floyd, Pratt, Rivest,
and Tarjan [1973].

IDEA: Generate a good pivot recursively.

2/17/05 CS 5633 Analysis of Algorithms

== Worst-case linear-time order

ey u . .

w0 statistics

SELECT(Z, 1)

1. Divide the » elements into groups of 5. Find
the median of each 5-element group by rote.

2. Recursively SELECT the median x of the | /5 |
group medians to be the pivot.

3. Partition around the pivot x. Let & = rank(x).)
4.if i =k then return x

elseif i </ Same as
then recursively SELECT the ith > RAND-
smallest element in the lower part SELECT

else recursively SELECT the (i—k)th
smallest element in the upper part)

“.H_‘.“m““h o L]
= 4~ Choosing the pivot

S Choosmg the pivot S Choosmg the pivot
@ ¢ e & ¢ ¢ ¢ ¢ o @
@ ¢ e ¢ ¢ ¢ ¢ ¢ o @
@ ¢ e ¢ ¢ ¢ ¢ ¢ o @
e ¢ e @& ¢ ¢ ¢ ¢ o @
e 6 & ¢ o ¢ o o
1. Divide the n elements into groups of 5. 1. Divide the # elements into groups of 5. Find /esser
the median of each 5-element group by rote. I
greater
2/17/05 CS 5633 Analysis of Algorithms 21 2/17/05 CS 5633 Analysis of Algorithms 22
o Choosmg the pivot —_— Analys1s
@ @
@ @
— =
BB 3 B X o)
@ @
1. Divide the 7 elements into groups of 5. Find /esser At least half the group medians are < x, which ~ /esser
the median of each 5-element group by rote. is at least | |/ SJg/ZJ Ln/10] group medians.
2. Recursively SELECT the median x of the | /5 |
group medians to be the pivot. greater greater

— Analysis (Assume all elements are distinct.) ey Analysis (Assume all elements are distinct.)
@ @
[@
—— =
x o I D K
@ [
At least half the group medians are < x, which ~ lesser At least half the group medians are < x, which ~ fesser
is at least | Ln/SJg/ﬂ = n/10] group medians. is at least | Ln/SJg/ﬂ = n/10] group medians.
* Therefore, at least 3 | 7/10] elements are < x. * Therefore, at least 3 | n/10] elements are < x.
greater * Similarly, at least 3 | 7/10] elements are > x. greater
2/17/05 CS 5633 Analysis of Algorithms 25 2/17/05 CS 5633 Analysis of Algorithms 26
“.H_‘.“”“““h [(] [[“.H_‘.“”“““h [
= 4~ Minor simplification = 4~ Developing the recurrence
* For n > 50, we have 3 | n/10] > n/4. T(n) SELECT(i, n)
» Therefore, for n > 50 the recursive call to o) { 1. Divide the 7 elements into groups of 5. Find
SELECT in Step 4 is executed recursively the median of each 5-element group by [(’te- |
on < 31/4 elements. 2. Recursively SELECT the median x of the | /5
") . I(n/5) group medians to be the pivot.
* Thus, the recurrence for running time O(n) 3. Partition around the pivot x. Let k= rank(x).
can assume that Step 4 takes time (4 if i =/ then return x
7(3n/4) in the worst case. elseif / <k
. then recursively SELECT the ith
Fpr n < 50, we know that the worst-case T(3n/4) 3 smallest element in the lower part
time is 7(n) = ©(1). else recursively SELECT the (i—k)th
\ smallest element in the upper part

= 4~ Solving the recurrence
T(n) = T@ nj + T[an +O(n)

Substitution: T(n)< Lent3en+ O(n)
T(n) <cn ?9 4
=-"Zcn+0O(n)
20
1
=cn—| —-cn—0O(n
(z57-)
<cn

9

if ¢ 1s chosen large enough to handle both the
®(n) and the initial conditions.

2/17/05 CS 5633 Analysis of Algorithms 29

= 4~ Conclusions

* Since the work at each level of recursion
is a constant fraction (19/20) smaller, the
work per level is a geometric series
dominated by the linear work at the root.

* In practice, this algorithm runs slowly,
because the constant in front of # is large.

* The randomized algorithm is far more
practical.

Exercise: Try to divide into groups of 3 or 7.

2/17/05 CS 5633 Analysis of Algorithms 30

