||||||||||||||

—— CS 5633 -- Spring 2005

ALGORITHMS

Recurrences and Divide & Conquer

Carola Wenk

Slides courtesy of Charles Leiserson with small
changes by Carola Wenk

1/27/05 CS 5633 Analysis of Algorithms

1

||||||||||||||

;"'-!'f!!\,-s Merge sort

MERGE-SORT A[1 .. n]

1/27/05

. If n=1, done.
. Recursively sort A[1. .[n/21]

and A[[n/2H1..n].

. “Merge” the 2 sorted lists.

Key subroutine: MERGE

CS 5633 Analysis of Algorithms

||||||||||||||

'ﬂ Merging two sorted arrays

w

20 12
13 11
7 9
e

1

20 12
13 11
7 9

R

2

20 12
13 11
9

7

20 12
13 11

9

20 12
13

11

Time dn = ©(n) to merge a
total of » elements (linear
time).

20 (12)

13

12

||||||||||||||

w

;"'-"!F,-s Analyzing merge sort

T(n) MERGE-SORT 4[] . . 7]

d, 1. If n = 1, done.

2T(n/2)| 2. Recursively sort A[1 ..[n/27]
/ and A[[n/21+1..n].

dn

3. “Merge” the 2 sorted lists

Sloppiness: Should be 7([n/21) + T([n/2]),
but it turns out not to matter asymptotically.

“<* Recurrence for merge sort

dyifn=1;
T(n) = :
2T(n/2) +dnifn>1.

» We shall often omit stating the base case
when 7(n) = ©(1) for sufficiently small 7,
but only when it has no effect on the
asymptotic solution to the recurrence.

* But what does 7(7) solve to? L.e., is it
O(n) or O(n?) or O(n’) or ...?

1/27/05 CS 5633 Analysis of Algorithms 5

w= The divide-and-conquer
~' w e ° o
~ design paradigm

1. Divide the problem (instance)
into subproblems.

2. Congquer the subproblems by
solving them recursively.

3. Combine subproblem solutions.

1/27/05 CS 5633 Analysis of Algorithms

= &+ Example: merge sort

1. Divide: Trivial.
2. Congquer: Recursively sort 2 subarrays.
3. Combine: Linear-time merge.

T(n)=2T(n/2) + An)

\
subproblems work dividing

subproblem size and combining

‘.'\\I".I!MIH“\ L3
~ &~ Binary search

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conquer: Recursively search | subarray.
3. Combine: Trivial.

Example: Find 9
3 5 7 8 9 12 15

.\I_m”“ll“h L
.-‘;;.," Binary search

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conquer: Recursively search | subarray.

3. Combine: Trivial.
Example: Find 9
35 7 8 9 12 15

1/27/05 CS 5633 Analysis of Algorithms 9

.\I_m”“ll“h L
.-‘;;.," Binary search

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conquer: Recursively search | subarray.

3. Combine: Trivial.
Example: Find 9
35 7 8 9 12 15

1/27/05 CS 5633 Analysis of Algorithms 10

l“\l_m!m““h L
~ & Recurrence for binary search

T(n)=1T(n/2) +O(1)

\
subproblems work dividing

subproblem size and combining

“<* Recurrence for merge sort

o [0 ifn=1;
()= {2T(n/2)+®(n) ifn>1.

* How do we solve 7(7)? I.e., how do we
found out if it is O(n) or O(n?) or ...?

M‘;M-_ Recursion tree

[}
A

Solve 7(n) = 2T1(n/2) + dn, where d > 0 is constant.

T(n)

1/27/05 CS 5633 Analysis of Algorithms 13

1‘; Recursion tree
Solve 7(n) = 2T1(n/2) + dn, where d > 0 is constant.
dn
RN
T(n/2) T(n/2)

1/27/05 CS 5633 Analysis of Algorithms 14

E‘;M-_ Recursion tree

[}
Al

Solve 7(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

/ \
dn/2 dn/2
VRN VAN

Tm/4) Twd) T4 Twd)

E‘;M-_ Recursion tree

[}
Al

Solve 7(n) = 2T1(n/2) + dn, where d > 0 is constant.

dn e dn
T

dn/2 dn/2 - dn

/N /N
h=logn gua ana dnwid dn/d - dn

/
/ '
A(1) -~ #Hleaves=n) A(n)

Total ®(n log n)

ALGORIT

“ <+ Conclusions
* Merge sort runs in ®(n Ig) time.

* O(n lg n) grows more slowly than O(»?).

* Therefore, merge sort asymptotically
beats insertion sort in the worst case.

* In practice, merge sort beats insertion
sort for » > 30 or so. (Why not earlier?)

1/27/05 CS 5633 Analysis of Algorithms 17

ALGORIT

~ o~ Recursion-tree method

w

* A recursion tree models the costs (time) of a
recursive execution of an algorithm.

 The recursion-tree method can be unreliable,
just like any method that uses ellipses (...).

* It is good for generating guesses of what the
runtime could be.

But: Need to verify that the guess is right.
— Induction (substitution method)

1/27/05 CS 5633 Analysis of Algorithms

ALGo
Eve=m

= 4~ Substitution method
The most general method to solve a recurrence
(prove O and Q) separately):

1. Guess the form of the solution:
(e.g. using recursion trees, or
expansion)
2. Verify by induction (inductive step).
3. Solve for O-constants 7, and ¢ (base case
of induction)

@ The divide-and-conquer
~' - e . .
~ design paradigm

1. Divide the problem (instance) into
subproblems.

a subproblems, each of size n/b

2. Congquer the subproblems by
solving them recursively.

3. Combine subproblem solutions.
Runtime is f(7n)

."'-"“!T--i The master method ."'-!:!T--i Three common cases

Compare f(n) with n'o2v:;

The master method applies to recurrences of 1. f(n)= O(n'°2~¢) for some constant & > 0.
the form * /(n) grows polynomially slower than 7'°¢>
g poly y
T(n)=aT(n/b) + f(n), (by an n* factor).

where @« > 1, b > 1, and f is asymptotically Solution: T(n) = O(n'er?) .

positive. 2. f(n) = O(n'"er |gkn) for some constant & > 0.
e /(n) and n'°2* grow at similar rates.
Solution: T(n) = O(n'oere 1g-1p) |

1/27/05 CS 5633 Analysis of Algorithms 21 1/27/05 CS 5633 Analysis of Algorithms 22
."'-"“!!“--i Three common cases (cont.) ."'-jg‘“---‘ Examples
: logpa-
Compare /(7) with n'°¢h4; Ex. T(n) = 4T(n/2) +
3. f(n)=Q(n'°2" ") for some constant & > 0. a=4,b=2= nltd=n; f(n)=n.
s /(n) grows polynomially faster than n'°2:¢ (by (;ASE 1: f(n) S O(n* %) forg = 1.
an n* factor), = T(n) = ©(n).
and [(n) satisfies the regularity condition that
Ex. T(n) =4T(n/2) + n?
< <
af(n/l.)) < ¢ f(n) for some constant ¢ < 1. =4, b=2 = noma= 2 f(n) = .
Solution: T(n) = O(f(n)) . CASE 2: f(n) = O(n?1g’n), that is, k = 0.

- T(n) = O(n’lgn).

_; Examples
Ex. T(n) = 4T(n/2) + n’
a=4,b=2= nltd=n; f(n)=n’.
CASE3: f(n)=Q(n* %) fore =1
and 4(cn/2)* < cn’ (reg. cond.) for ¢ = 1/2.
- T(n) = O(n?).

Ex. T(n) = 4T(n/2) + n?*/1gn
a=4,b=2= nlotrt=p2 f(n)=n*lgn.
Master method does not apply. In particular,

for every constant € > 0, we have n* =w(lgn).

1/27/05 CS 5633 Analysis of Algorithms 25

||||||||||||||

_; Master theorem (summary)
T(n) = a T(n/b) + f(n)
CASE 1: f(n) = O(n'°2*~?)
— T(I/l) — @(nl()gba) .

CASE 2: f(n) = ©(n'o2¢ 1gkn)
= T(n) = O(n'°2? 1g"1n) |

CASE 3: f(n) = Q(n'°20¢*#) and af(n/b) < cf(n)
= T(n) = O(f(n)) .
Merge sort: a =2,b=2 = nleri=p
— CASE2 (k=0) = T(n)=0(nlgn).

1/27/05 CS 5633 Analysis of Algorithms 26

