B CS 5633 - Spring 2004

ALGORITHMS

P and NP

Carola Wenk

Slides courtesy of Piotr Indyk with small changes
by Carola Wenk

4/19/04 CS 5633 Analysis of Algorithms 1

P vs NP
(interconnectedness of all things)

* A whole course by 1itself
* We’ll do just two lectures

e More 1n advanced courses

4/19/04 CS 5633 Analysis of Algorithms 2

Have seen so far

* Algorithms for various problems

— Running times O(nm?),0(n?) ,O(n log n),
O(n), etc.

—I.e., polynomial in the input size

* Can we solve all (or most of) interesting
problems in polynomial time ?

* Not really...

4/19/04 CS 5633 Analysis of Algorithms

Example difficult problem

» Traveling Salesperson
Problem (TSP)

— Input: undirected graph
with lengths on edges

— Output: shortest tour that
visits each vertex exactly
once

* Best known algorithm:
O(n 2") time.

4/19/04 CS 5633 Analysis of Algorithms 4

Another difficult problem

* Chque:
— Input: undirected graph
G=(V,E)

— Output: largest subset C
of V such that every pair
of vertices 1n C has an
edge between them

* Best known algorithm:
O(n 2") time

4/19/04 CS 5633 Analysis of Algorithms

What can we do ?

* Spend more time designing algorithms for those
problems

— People tried for a few decades, no luck

* Prove there 1s no polynomial time algorithm for
those problems

— Would be great

— Seems really difficult

— Best lower bounds for “natural” problems:
 ()(n?) for restricted computational models
* 4.5n for unrestricted computational models

4/19/04 CS 5633 Analysis of Algorithms

4/19/04

What else can we do ?

Show that those hard problems are
essentially equivalent. I.e., 1f we can solve
one of them 1n polynomial time, then all
others can be solved in polynomial time as
well.

Works for at least 10 000 hard problems

CS 5633 Analysis of Algorithms

4/19/04

The benetits of equivalence

Combines research

efforts
If one problem has

polynomial time Pl

solution, then all of
them do P>
More realistically:

Once an exponential
lower bound 1s shown

for one problem, it
holds for all of them P3

CS 5633 Analysis of Algorithms

Summing up

 If we show that a problem | | 1s equivalent
to ten thousand other well studied problems
without efficient algorithms, then we get a
very strong evidence that | | 1s hard.

* We need to:
— Identify the class of problems of interest
— Define the notion of equivalence
— Prove the equivalence(s)

4/19/04 CS 5633 Analysis of Algorithms

Class of problems: NP

* Decision problems: answer YES or NO. E.g.,”1s
there a tour of length < K* ?

* Solvable 1n non-deterministic polynomial time:

— Intuitively: the solution can be verified in
polynomial time

— E.g., if someone gives us a tour T, we can

verify 1n polynomial time 1f T 1s a tour of length
<K.

e Theretore, TSP 1s in NP.

4/19/04 CS 5633 Analysis of Algorithms

10

Formal definitions of P and NP

* A problem || 1s solvable in polynomial time (or
| |€P), 1f there 1s a polynomial time algorithm A(.)
such that for any input x:

[[(x)=YES 1ff A(x)=YES

* A problem || 1s solvable in non-deterministic
polynomial time (or | |e NP), if there 1s a
polynomial time algorithm A(. , .) such that for
any 1nput x:

| [(x)=YES 1iff there exists a certificate y of size
poly(|x|) such that A(x,y)=YES

4/19/04 CS 5633 Analysis of Algorithms

11

Examples of problems in NP

* Is “Does there exist a clique in G of size >K” 1n
NP ?

Yes: A(x,y) interprets x as a graph G, y as a set C,
and checks 1f all vertices in C are adjacent and 1f
ICI=K

* Is Sorting in NP ?
No, not a decision problem.
* Is “Sortedness” in NP ?
Yes: 1ignore y, and check if the input x 1s sorted.

4/19/04 CS 5633 Analysis of Algorithms

12

4/19/04

Reductions: ||’ to |]

ﬂx?=x=

A for]

<

YES

NO

—YES

A’ for []

CS 5633 Analysis of Algorithms

13

Reductions

* || 1s polynomial time reducibleto || (|]"<]])
1ff there 1s a polynomial time function f that maps
inputs x’ to | |” into mnputs x of | |, such that for
any x’

[T 6)=TI(Eex))

 Factl:if[|]ePand || <]|]|then][] €P
 Fact2:1f [[eNPand [|" <[] then || eNP
» Fact 3 (transitivity):

if [<[]"and|]"<||then|[]|" <]]

4/19/04 CS 5633 Analysis of Algorithms 14

Recap

* We defined a large class of interesting
problems, namely NP

* We have a way of saying that one problem
is not harder than another ([|” <[])

* QOur goal: show equivalence between hard
problems

4/19/04 CS 5633 Analysis of Algorithms

15

Showing equivalence between
difficult problems

TS

* Options:

4/19/04

— Show reductions between all \™
pairs of problems Chque

— Reduce the number of

reductions using transitivity
Of 66<99

— Show that a// problems in NP \
a reducible to a fixed | |. To P3 P4
show that some
problem | |’eNP is equivalent

to all difficult problems, we
only show [[<[].

CS 5633 Analysis of Algorithms

16

The first problem | |

 Satisfiability problem (SAT):

— Given: a formula ¢ with m clauses over n
variables, e.g., X;vX,vXs, X5v 7 Xs

— Check 1if there exists TRUE/FALSE
assignments to the variables that makes
the formula satisfiable

4/19/04 CS 5633 Analysis of Algorithms 17

4/19/04

have || < SAT.

Definition: A problem | | such that for any
||’eNP we have | |

Definition: An NP-]

belongs to NP 1s called NP-complete

SAT is NP-complete

Fact: SAT eNP

Theorem [Cook’71]: Forany | |["eNP , we

" <], 1s called NP-hard
nard problem that

Corollary: SAT 1s NP-complete.

CS 5633 An

alysis of Algorithms

18

Plan of attack:

Clique -
Ind l d (thanks, Steve ©)
n epen ent set Follow from Cook’s Theorem

l

Vertex cover

Conclusion: all of the above problems are NP-
complete

4/19/04 CS 5633 Analysis of Algorithms 19

Clique again

* Chque:
— Input: undirected graph
G=(V.,E), K

— QOutput: 1s there a subset C
of V, |C|=K, such that
every pair of vertices in C
has an edge between them

4/19/04 CS 5633 Analysis of Algorithms

20

SAT < Clique

* Given a SAT formula o=C,,...,C_ over
Xy,....X, we need to produce G=(V,E) and
K, such that ¢ satisfiable 1ff G has a clique
of size > K.

 Notation: a literal 1s either x; or —x.

4/19/04 CS 5633 Analysis of Algorithms 21

SAT < Clique reduction

* For each literal t occurring 1n @, create a
vertex v,

* Create an edge v, — v, 1ift:
—tand t’ are not in the same clause, and

— 1t 1s not the negation of t’

4/19/04 CS 5633 Analysis of Algorithms

22

SAT < Clique example

e tand t° are not in the same clause, and

Edgev,—v. < | .
SEViT Y * { 1S not the negation of t’

¢ FOTIHUla: XIVX2VX3 ’ ﬁXzVﬁX?), _IXI VX2

* Graph:

e Claim: ¢ satisgable 1ff G has a clique of
S1Ze€ > m

4/19/04 CS 5633 Analysis of Algorithms

23

Proof

Edge v, — v, <

e tand t° are not in the same clause, and
* { 1S not the negation of t’

4/19/04

“—” part:

— Take any assignment that
satisfies .

E.g., x=F, x,=T, x;=F

— Let the set C contain one
satisfied literal per clause

—Ci1saclique

CS 5633 Analysis of Algorithms

24

Proof

Edge v, — v, <

e tand t° are not in the same clause, and
* { 1S not the negation of t’

4/19/04

66(_99 paI’t:

— Take any clique C of size > m
(1.e., = m)

— Create a set of equations that
satisfies selected literals.

E.g., x;=1, x,=F, x;=F

— The set of equations 1s
consistent and the solution
satisfies @

CS 5633 Analysis of Algorithms

25

4/19/04

Altogether

We constructed a reduction that maps:
— YES mputs to SAT to YES 1nputs to

Clique

— NO 1puts to SAT to NO nputs to Clique

Tl
Tl
C

ne reduction works in polynomial time
nerefore, SAT < Clique —Clique NP-hard

1que 1s in NP — Clique 1s NP-complete

CS 5633 Analysis of Algorithms

26

Independent set (IS)

* Input: undirected graph
G=(V,E)

* Qutput: 1s there a subset S of
V, IS=K such that no pair of
vertices 1n S has an edge
between them

4/19/04 CS 5633 Analysis of Algorithms

27

Clique < IS

* Given an mput G=(V,E), K to
Clique, need to construct an
mput G’=(V’,E’), K’ to IS, such
that G has clique of size >K 1ff
G’ has IS of size >K.

e Construction: K’=K,V’=V E’=E

* Reason: C 1s a clique in G 1ff 1t
1s an IS 1n G’s complement.

4/19/04 CS 5633 Analysis of Algorithms

28

Vertex cover (VC)

* Input: undirected graph
G=(V,E)

* QOutput: 1s there a subset C
of V, |C| <K, such that each
edge 1n E 1s incident to at
least one vertex in C.

4/19/04 CS 5633 Analysis of Algorithms

29

IS<VC

* (Given an mput G=(V,E), K to
IS, need to construct an mput
G’=(V’,E’), K’ to VC, such that
G has an IS of size >K iff G’ has
VC of size <K.

e Construction: V'=V, E’=E,
K’=|V|-K

e Reason: Si1san IS in G 1ff V-S
1sa VC in G.

4/19/04 CS 5633 Analysis of Algorithms

30

