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P vs NP 
(interconnectedness of all things)

• A whole course by itself
• We’ll do just two lectures
• More in advanced courses
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Have seen so far

• Algorithms for various problems
– Running times O(nm2),O(n2) ,O(n log n), 

O(n), etc.
– I.e., polynomial in the input size

• Can we solve all (or most of) interesting 
problems in polynomial time ?

• Not really…
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Example difficult problem

• Traveling Salesperson 
Problem (TSP)
– Input: undirected graph 

with lengths on edges
– Output: shortest tour that 

visits each vertex exactly 
once

• Best known algorithm:    
O(n 2n) time.
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Another difficult problem

• Clique:
– Input: undirected graph 

G=(V,E)
– Output: largest subset C

of V such that every pair 
of vertices in C has an 
edge between them

• Best known algorithm:     
O(n 2n) time
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What can we do ?

• Spend more time designing algorithms for those 
problems 
– People tried for a few decades, no luck

• Prove there is no polynomial time algorithm for 
those problems
– Would be great
– Seems really difficult
– Best lower bounds for “natural” problems:

• Ω(n2) for restricted computational models
• 4.5n for unrestricted computational models
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What else can we do ?

• Show that those hard problems are 
essentially equivalent. I.e., if we can solve 
one of them in polynomial time, then all 
others can be solved in polynomial time as 
well.

• Works for at least 10 000 hard problems
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The benefits of equivalence

• Combines research 
efforts

• If one problem has 
polynomial time 
solution, then all of 
them do

• More realistically:
Once an exponential  
lower bound is shown 
for one problem, it 
holds for all of them

P1

P2

P3
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Summing up

• If we show that a problem ∏ is equivalent 
to ten thousand other well studied problems 
without efficient algorithms, then we get a 
very strong evidence that ∏ is hard.

• We need to:
– Identify the class of problems of interest
– Define the notion of equivalence
– Prove the equivalence(s)
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Class of problems: NP

• Decision problems: answer YES or NO. E.g.,”is
there a tour of length ≤ K” ?

• Solvable in non-deterministic polynomial time:
– Intuitively: the solution can be verified in 

polynomial time
– E.g., if someone gives us a tour T, we can 

verify in polynomial time if T is a tour of length 
≤ K.

• Therefore, TSP is in NP. 
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Formal definitions of P and NP
• A problem ∏ is solvable in polynomial time (or 
∏∈P), if there is a polynomial time algorithm A(.)
such that for any input x:

∏(x)=YES iff A(x)=YES

• A problem ∏ is solvable in non-deterministic
polynomial time (or ∏∈NP), if there is a 
polynomial time algorithm A(. , .) such that for 
any input x:
∏(x)=YES iff there exists a certificate y of size 

poly(|x|) such that A(x,y)=YES
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Examples of problems in NP

• Is “Does there exist a clique in G of size ≥K” in 
NP ? 
Yes: A(x,y) interprets x as a graph G, y as a set C, 
and checks if all vertices in C are adjacent and if 
|C|≥K

• Is Sorting in NP ? 
No, not a decision problem.

• Is “Sortedness” in NP ?
Yes: ignore y, and check if the input x is sorted.
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Reductions: ∏’ to ∏

A for ∏
YES

NO
fx’ f(x’)=

A’ for ∏’

x
YES

NO
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Reductions
• ∏’ is polynomial time reducible to ∏ ( ∏’ ≤ ∏ ) 

iff there is a polynomial time function f that maps 
inputs x’ to ∏’ into inputs x of ∏, such that for 
any x’

∏’(x’)=∏(f(x’))

• Fact 1: if ∏∈P and ∏’ ≤ ∏ then ∏’∈P
• Fact 2: if ∏∈NP and ∏’ ≤ ∏ then ∏’∈NP
• Fact 3 (transitivity): 

if ∏’’ ≤ ∏’ and ∏’ ≤ ∏ then ∏” ≤ ∏



CS 5633 Analysis of Algorithms 154/19/04

Recap

• We defined a large class of interesting 
problems, namely NP

• We have a way of saying that one problem 
is not harder than another (∏’ ≤ ∏)

• Our goal: show equivalence between hard 
problems
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Showing equivalence between 
difficult problems

TSP

P3 P4

Clique

P5

• Options:
– Show reductions between all 

pairs of problems
– Reduce the number of 

reductions using transitivity 
of “≤”

– Show that all problems in NP 
a reducible to a fixed ∏. To 
show that some                         
problem ∏’∈NP is equivalent 
to all difficult problems, we 
only show ∏ ≤ ∏’.

∏

∏’

≤
≤≤



CS 5633 Analysis of Algorithms 174/19/04

The first problem ∏

• Satisfiability problem (SAT):
– Given: a formula φ with m clauses over n

variables, e.g.,    x1v x2 v x5 , x3 v ¬ x5

– Check if there exists TRUE/FALSE 
assignments to the variables that makes 
the formula satisfiable
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SAT is NP-complete

• Fact: SAT ∈NP
• Theorem [Cook’71]: For any ∏’∈NP , we 

have ∏’ ≤ SAT.
• Definition: A problem ∏ such that for any 
∏’∈NP we have ∏’ ≤ ∏, is called NP-hard

• Definition: An NP-hard problem that 
belongs to NP is called NP-complete

• Corollary: SAT is NP-complete.
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Plan of attack:

SAT

Clique

Vertex cover

Independent set

Conclusion: all of the above problems are NP-
complete

Follow from Cook’s Theorem

(thanks, Steve ☺ )
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Clique again

• Clique:
– Input: undirected graph 

G=(V,E), K
– Output: is there a subset C

of V, |C|≥K, such that 
every pair of vertices in C
has an edge between them
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SAT ≤ Clique

• Given a SAT formula φ=C1,…,Cm over 
x1,…,xn, we need to produce G=(V,E) and 
K, such that φ satisfiable iff G has a clique 
of size ≥ K.

• Notation: a literal is either xi or ¬xi
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SAT ≤ Clique reduction

• For each literal t occurring in φ, create a 
vertex vt

• Create an edge vt – vt’ iff:
– t and t’ are not in the same clause, and
– t is not the negation of t’
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SAT ≤ Clique example

• Formula: x1v x2 v x3 , ¬ x2 v ¬ x3, ¬ x1 v x2

• Graph:

x1

x2

x3

¬x2

¬ x1

¬ x3

x2

• Claim: φ satisfiable iff G has a clique of 
size ≥ m

• t and t’ are not in the same clause, and
• t is not the negation of t’

Edge vt – vt’ ⇔
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Proof

• “→” part:
– Take any assignment that 

satisfies φ.
E.g., x1=F, x2=T, x3=F

– Let the set C contain one 
satisfied literal per clause

– C is a clique

x1

x2

x3

¬x2

¬ x1

¬ x3

x2

• t and t’ are not in the same clause, and
• t is not the negation of t’

Edge vt – vt’ ⇔
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Proof

• “←” part:
– Take any clique C of size ≥ m

(i.e., = m) 
– Create a set of equations that 

satisfies selected literals.
E.g., x3=T, x2=F, x1=F

– The set of equations is 
consistent and the solution 
satisfies φ

x1

x2

x3

¬x2

¬ x1

¬ x3

x2

• t and t’ are not in the same clause, and
• t is not the negation of t’

Edge vt – vt’ ⇔
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Altogether

• We constructed a reduction that maps:
– YES inputs to SAT to YES inputs to 

Clique
– NO inputs to SAT to NO inputs to Clique

• The reduction works in polynomial time
• Therefore, SAT ≤ Clique →Clique NP-hard
• Clique is in NP → Clique is NP-complete
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Independent set (IS)

• Input: undirected graph 
G=(V,E)

• Output: is there a subset S of 
V, |S|≥K such that no pair of 
vertices in S has an edge 
between them
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Clique ≤ IS

• Given an input G=(V,E), K to 
Clique, need to construct an 
input G’=(V’,E’), K’ to IS, such 
that G has clique of size ≥K iff
G’ has IS of size ≥K.

• Construction: K’=K,V’=V,E’=E
• Reason: C is a clique in G iff it 

is an IS in G’s complement. 
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Vertex cover (VC)

• Input: undirected graph 
G=(V,E)

• Output: is there a subset C
of V, |C| ≤ K, such that each 
edge in E is incident to at 
least one vertex in C.
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IS ≤ VC

• Given an input G=(V,E), K to 
IS, need to construct an input 
G’=(V’,E’), K’ to VC, such that 
G has an IS of size ≥K iff G’ has 
VC of size ≤K’.

• Construction: V’=V, E’=E, 
K’=|V|-K

• Reason: S is an IS in G iff V-S
is a VC in G. 


