
CS 5633 Analysis of Algorithms 14/19/04

CS 5633 -- Spring 2004

P and NP
Carola Wenk

Slides courtesy of Piotr Indyk with small changes
by Carola Wenk

CS 5633 Analysis of Algorithms 24/19/04

P vs NP
(interconnectedness of all things)

• A whole course by itself
• We’ll do just two lectures
• More in advanced courses

CS 5633 Analysis of Algorithms 34/19/04

Have seen so far

• Algorithms for various problems
– Running times O(nm2),O(n2) ,O(n log n),

O(n), etc.
– I.e., polynomial in the input size

• Can we solve all (or most of) interesting
problems in polynomial time ?

• Not really…

CS 5633 Analysis of Algorithms 44/19/04

Example difficult problem

• Traveling Salesperson
Problem (TSP)
– Input: undirected graph

with lengths on edges
– Output: shortest tour that

visits each vertex exactly
once

• Best known algorithm:
O(n 2n) time.

5

9

8
10

4

5

3

2

9

11

6

7

CS 5633 Analysis of Algorithms 54/19/04

Another difficult problem

• Clique:
– Input: undirected graph

G=(V,E)
– Output: largest subset C

of V such that every pair
of vertices in C has an
edge between them

• Best known algorithm:
O(n 2n) time

CS 5633 Analysis of Algorithms 64/19/04

What can we do ?

• Spend more time designing algorithms for those
problems
– People tried for a few decades, no luck

• Prove there is no polynomial time algorithm for
those problems
– Would be great
– Seems really difficult
– Best lower bounds for “natural” problems:

• Ω(n2) for restricted computational models
• 4.5n for unrestricted computational models

CS 5633 Analysis of Algorithms 74/19/04

What else can we do ?

• Show that those hard problems are
essentially equivalent. I.e., if we can solve
one of them in polynomial time, then all
others can be solved in polynomial time as
well.

• Works for at least 10 000 hard problems

CS 5633 Analysis of Algorithms 84/19/04

The benefits of equivalence

• Combines research
efforts

• If one problem has
polynomial time
solution, then all of
them do

• More realistically:
Once an exponential
lower bound is shown
for one problem, it
holds for all of them

P1

P2

P3

CS 5633 Analysis of Algorithms 94/19/04

Summing up

• If we show that a problem ∏ is equivalent
to ten thousand other well studied problems
without efficient algorithms, then we get a
very strong evidence that ∏ is hard.

• We need to:
– Identify the class of problems of interest
– Define the notion of equivalence
– Prove the equivalence(s)

CS 5633 Analysis of Algorithms 104/19/04

Class of problems: NP

• Decision problems: answer YES or NO. E.g.,”is
there a tour of length ≤ K” ?

• Solvable in non-deterministic polynomial time:
– Intuitively: the solution can be verified in

polynomial time
– E.g., if someone gives us a tour T, we can

verify in polynomial time if T is a tour of length
≤ K.

• Therefore, TSP is in NP.

CS 5633 Analysis of Algorithms 114/19/04

Formal definitions of P and NP
• A problem ∏ is solvable in polynomial time (or
∏∈P), if there is a polynomial time algorithm A(.)
such that for any input x:

∏(x)=YES iff A(x)=YES

• A problem ∏ is solvable in non-deterministic
polynomial time (or ∏∈NP), if there is a
polynomial time algorithm A(. , .) such that for
any input x:
∏(x)=YES iff there exists a certificate y of size

poly(|x|) such that A(x,y)=YES

CS 5633 Analysis of Algorithms 124/19/04

Examples of problems in NP

• Is “Does there exist a clique in G of size ≥K” in
NP ?
Yes: A(x,y) interprets x as a graph G, y as a set C,
and checks if all vertices in C are adjacent and if
|C|≥K

• Is Sorting in NP ?
No, not a decision problem.

• Is “Sortedness” in NP ?
Yes: ignore y, and check if the input x is sorted.

CS 5633 Analysis of Algorithms 134/19/04

Reductions: ∏’ to ∏

A for ∏
YES

NO
fx’ f(x’)=

A’ for ∏’

x
YES

NO

CS 5633 Analysis of Algorithms 144/19/04

Reductions
• ∏’ is polynomial time reducible to ∏ (∏’ ≤ ∏)

iff there is a polynomial time function f that maps
inputs x’ to ∏’ into inputs x of ∏, such that for
any x’

∏’(x’)=∏(f(x’))

• Fact 1: if ∏∈P and ∏’ ≤ ∏ then ∏’∈P
• Fact 2: if ∏∈NP and ∏’ ≤ ∏ then ∏’∈NP
• Fact 3 (transitivity):

if ∏’’ ≤ ∏’ and ∏’ ≤ ∏ then ∏” ≤ ∏

CS 5633 Analysis of Algorithms 154/19/04

Recap

• We defined a large class of interesting
problems, namely NP

• We have a way of saying that one problem
is not harder than another (∏’ ≤ ∏)

• Our goal: show equivalence between hard
problems

CS 5633 Analysis of Algorithms 164/19/04

Showing equivalence between
difficult problems

TSP

P3 P4

Clique

P5

• Options:
– Show reductions between all

pairs of problems
– Reduce the number of

reductions using transitivity
of “≤”

– Show that all problems in NP
a reducible to a fixed ∏. To
show that some
problem ∏’∈NP is equivalent
to all difficult problems, we
only show ∏ ≤ ∏’.

∏

∏’

≤
≤≤

CS 5633 Analysis of Algorithms 174/19/04

The first problem ∏

• Satisfiability problem (SAT):
– Given: a formula φ with m clauses over n

variables, e.g., x1v x2 v x5 , x3 v ¬ x5

– Check if there exists TRUE/FALSE
assignments to the variables that makes
the formula satisfiable

CS 5633 Analysis of Algorithms 184/19/04

SAT is NP-complete

• Fact: SAT ∈NP
• Theorem [Cook’71]: For any ∏’∈NP , we

have ∏’ ≤ SAT.
• Definition: A problem ∏ such that for any
∏’∈NP we have ∏’ ≤ ∏, is called NP-hard

• Definition: An NP-hard problem that
belongs to NP is called NP-complete

• Corollary: SAT is NP-complete.

CS 5633 Analysis of Algorithms 194/19/04

Plan of attack:

SAT

Clique

Vertex cover

Independent set

Conclusion: all of the above problems are NP-
complete

Follow from Cook’s Theorem

(thanks, Steve ☺)

CS 5633 Analysis of Algorithms 204/19/04

Clique again

• Clique:
– Input: undirected graph

G=(V,E), K
– Output: is there a subset C

of V, |C|≥K, such that
every pair of vertices in C
has an edge between them

CS 5633 Analysis of Algorithms 214/19/04

SAT ≤ Clique

• Given a SAT formula φ=C1,…,Cm over
x1,…,xn, we need to produce G=(V,E) and
K, such that φ satisfiable iff G has a clique
of size ≥ K.

• Notation: a literal is either xi or ¬xi

CS 5633 Analysis of Algorithms 224/19/04

SAT ≤ Clique reduction

• For each literal t occurring in φ, create a
vertex vt

• Create an edge vt – vt’ iff:
– t and t’ are not in the same clause, and
– t is not the negation of t’

CS 5633 Analysis of Algorithms 234/19/04

SAT ≤ Clique example

• Formula: x1v x2 v x3 , ¬ x2 v ¬ x3, ¬ x1 v x2

• Graph:

x1

x2

x3

¬x2

¬ x1

¬ x3

x2

• Claim: φ satisfiable iff G has a clique of
size ≥ m

• t and t’ are not in the same clause, and
• t is not the negation of t’

Edge vt – vt’ ⇔

CS 5633 Analysis of Algorithms 244/19/04

Proof

• “→” part:
– Take any assignment that

satisfies φ.
E.g., x1=F, x2=T, x3=F

– Let the set C contain one
satisfied literal per clause

– C is a clique

x1

x2

x3

¬x2

¬ x1

¬ x3

x2

• t and t’ are not in the same clause, and
• t is not the negation of t’

Edge vt – vt’ ⇔

CS 5633 Analysis of Algorithms 254/19/04

Proof

• “←” part:
– Take any clique C of size ≥ m

(i.e., = m)
– Create a set of equations that

satisfies selected literals.
E.g., x3=T, x2=F, x1=F

– The set of equations is
consistent and the solution
satisfies φ

x1

x2

x3

¬x2

¬ x1

¬ x3

x2

• t and t’ are not in the same clause, and
• t is not the negation of t’

Edge vt – vt’ ⇔

CS 5633 Analysis of Algorithms 264/19/04

Altogether

• We constructed a reduction that maps:
– YES inputs to SAT to YES inputs to

Clique
– NO inputs to SAT to NO inputs to Clique

• The reduction works in polynomial time
• Therefore, SAT ≤ Clique →Clique NP-hard
• Clique is in NP → Clique is NP-complete

CS 5633 Analysis of Algorithms 274/19/04

Independent set (IS)

• Input: undirected graph
G=(V,E)

• Output: is there a subset S of
V, |S|≥K such that no pair of
vertices in S has an edge
between them

CS 5633 Analysis of Algorithms 284/19/04

Clique ≤ IS

• Given an input G=(V,E), K to
Clique, need to construct an
input G’=(V’,E’), K’ to IS, such
that G has clique of size ≥K iff
G’ has IS of size ≥K.

• Construction: K’=K,V’=V,E’=E
• Reason: C is a clique in G iff it

is an IS in G’s complement.

CS 5633 Analysis of Algorithms 294/19/04

Vertex cover (VC)

• Input: undirected graph
G=(V,E)

• Output: is there a subset C
of V, |C| ≤ K, such that each
edge in E is incident to at
least one vertex in C.

CS 5633 Analysis of Algorithms 304/19/04

IS ≤ VC

• Given an input G=(V,E), K to
IS, need to construct an input
G’=(V’,E’), K’ to VC, such that
G has an IS of size ≥K iff G’ has
VC of size ≤K’.

• Construction: V’=V, E’=E,
K’=|V|-K

• Reason: S is an IS in G iff V-S
is a VC in G.

