Bl CS 5633 - Spring 2004

[W :
“\‘ i

ALGORITHMS

1 il
|
\\"l —
1 ‘ l THOMAS H CORMEN
CHARLES E LEISERSON
RONALD L. RIVEST
CLIFFORD S TEIN

Dynamic Tables

Carola Wenk

Slides courtesy of Charles Leiserson with small
changes by Carola Wenk

2/23/04 CS 5633 Analysis of Algorithms

w== How large should a hash
‘*“.‘--‘ table be?

Goal: Make the table as small as possible, but
large enough so that it won’t overflow (or
otherwise become 1nefficient).

Problem: What if we don’t know the proper size
in advance?

Solution: Dynamic tables.

IDEA: Whenever the table overflows, “grow” it
by allocating (viamalloc or new) a new, larger

table. Move all items from the old table into the
new one, and free the storage for the old table.

2/23/04 CS 5633 Analysis of Algorithms

i:;‘ Example of a dynamic table

Y

l. INSERT 3

2. INSERT overflow

2/23/04 CS 5633 Analysis of Algorithms

A\LGORITHMS

k-?;‘ Example of a dynamic table

Y

1. INSERT E—»H

2. INSERT overflow

2/23/04 CS 5633 Analysis of Algorithms

A\LGORITHMS

k-?;‘ Example of a dynamic table

Y

1. INSERT D 1
2. INSERT 2

2/23/04 CS 5633 Analysis of Algorithms

r ‘-:.(ﬁ;(“).ll‘{i"'l"H.,'\.i!"a' .
ey '_' Example of a dynamic table

Y

1. INSERT D 1
2. INSERT 2

3. INSERT overflow

2/23/04 CS 5633 Analysis of Algorithms

“ " Example of a dynamic table

Y

2. INSERT 2

3. INSERT overflow

2/23/04 CS 5633 Analysis of Algorithms

“ " Example of a dynamic table

Y

2. INSERT 2

2/23/04 CS 5633 Analysis of Algorithms

. ~
\ £

3‘ Example of a dynamic table

Y

1. INSERT D 1
2. INSERT 2
3. INSERT 3
4. INSERT 4

2/23/04 CS 5633 Analysis of Algorithms

:";:\-', ' Example of a dynamic table

. INSERT D I
. INSERT 2
3

|
2
3. INSERT
4
5

. INSERT 4
. INSERT overflow

2/23/04 CS 5633 Analysis of Algorithms

St “ Example of a dynamic table

. INSERT D
. INSERT

|
2
3. INSERT
4
5

AN B OO T B \O I

. INSERT
. INSERT overflow

2/23/04 CS 5633 Analysis of Algorithms

:";:\-', ' Example of a dynamic table

. INSERT D
. INSERT

|
2
3. INSERT
4
5

AN B OO T B \O I

. INSERT
. INSERT

2/23/04 CS 5633 Analysis of Algorithms

St “ Example of a dynamic table

1 ON O B W N

2/23/04

. INSERT
. INSERT
. INSERT
. INSERT
. INSERT
. INSERT
. INSERT

-

CS 5633 Analysis of Algorithms

S [o) N L, T I SO B 'S I I \NO I It

13

11

“ oY Worst-case analysis

YV e

Consider a sequence of 7 insertions. The
worst-case time to execute one insertion 1s
®(n). Therefore, the worst-case time for #
insertions is 7 - O(n) = O(n?).

WRONG! In fact, the worst-case cost for
n insertions is only O(n) < O(n?).

Let’s see why.

2/23/04 CS 5633 Analysis of Algorithms

“ <~ Tighter analysis

Let ¢;= the cost of the i/ th insertion

i ifi—1is an exact power of 2,
_ 1 otherwise.

= <

2/23/04 CS 5633 Analysis of Algorithms 15

’;\-', ' Tighter analysis

mny

Let ¢;= the cost of the i/ th insertion

i ifi—1is an exact power of 2,
_ 1 otherwise.

= <

2/23/04 CS 5633 Analysis of Algorithms 16

ALGORITHMS

-y

' ;‘ Tighter analysis (continued)

Y

Cost of 7 insertions = Z C;
i=1
Llg(n-)]
<n-+ Z 2/
j=0
<3n
=0(n).

Thus, the average cost of each dynamic-table
operation 1s O(n)/n = O(1).

2/23/04 CS 5633 Analysis of Algorithms 17

ALGORI
|m

“ 5+ Amortized analysis

An amortized analysis 1s any strategy for
analyzing a sequence of operations to
show that the average cost per operation 1s
small, even though a single operation
within the sequence might be expensive.

Even though we’re taking averages, however,
probability 1s not involved!

* An amortized analysis guarantees the
average performance of each operation in
the worst case.

2/23/04 CS 5633 Analysis of Algorithms

18

ALGORITHMS
:‘.‘j“‘ Types of amortized analyses

mny

Three common amortization arguments:

* the aggregate method,
* the accounting method, %over in class |
—e+ the potential method——

We’ve just seen an aggregate analysis.

The aggregate method, though simple, lacks the
precision of the other two methods. In particular,
the accounting and potential methods allow a
specific amortized cost to be allocated to each
operation.

2/23/04 CS 5633 Analysis of Algorithms 19

| ALGORITHMS
v* Accounting method

mny

. Charge I th operation a fictitious amortized cost
¢;, where $1 pays for 1 unit of work (i.e., time).

* This fee 1s consumed to perform the operation.

* Any amount not immediately consumed 1s stored
in the bank for use by subsequent operations.

* The bank balance must not go negative! We

must ensure that : :
Z c; < Z C;
for all ». =l =l

* Thus, the total amortized costs provide an upper
bound on the total true costs.

2/23/04 CS 5633 Analysis of Algorithms 20

m Accountlng analysis of
- dynamic tables

Charge an amortized cost of ¢; = $3 for the i th
insertion.
* $1 pays for the immediate insertion.

* $2 is stored for later table doubling.

When the table doubles, $1 pays to move a
recent item, and $1 pays to move an old item.

Example:
$0/$0($0($0($2($2|$2|$2]| overflow

]

2/23/04 CS 5633 Analysis of Algorithms

21

m Accounting analysis of
~" dynamic tables

Charge an amortized cost of ¢; = $3 for the i th
insertion.
* $1 pays for the immediate insertion.

* $2 is stored for later table doubling.

When the table doubles, $1 pays to move a
recent item, and $1 pays to move an old item.

Example:

]]]l]]]lloverﬂow

2/23/04 CS 5633 Analysis of Algorithms 22

m Accountmg analysis of
- dynamic tables

Charge an amortized cost of ¢; = $3 for the i th
insertion.
* $1 pays for the immediate insertion.

* $2 is stored for later table doubling.

When the table doubles, $1 pays to move a
recent item, and $1 pays to move an old item.

Example:

EEEEEEEN

2/23/04 CS 5633 Analysis of Algorithms

23

m Accountmg analysis
~7 (continued)

Key invariant: Bank balance never drops below O.
Thus, the sum of the amortized costs provides an
upper bound on the sum of the true costs.

i1 2 4 9 10

4
|
3
4

*Okay, so I lied. The first operation costs only $2, not $3.

2/23/04 CS 5633 Analysis of Algorithms 24

ALGORITHM
im
| .

‘

-

=4~ Conclusions

» Amortized costs can provide a clean abstraction
of data-structure performance.

* Any of the analysis methods can be used when
an amortized analysis 1s called for, but each
method has some situations where 1t 1s arguably
the stmplest.

* Different schemes may work for assigning
amortized costs in the accounting method,
sometimes yielding radically different bounds.

2/23/04 CS 5633 Analysis of Algorithms 25

