
CS 5633 Analysis of Algorithms 13/22/04

CS 5633 -- Spring 2004

Computational Geometry
Carola Wenk

Slides courtesy of Charles Leiserson with small
changes by Carola Wenk

CS 5633 Analysis of Algorithms 23/22/04

Computational geometry
Algorithms for solving “geometric problems”
in 2D and higher.
Fundamental objects:

point line segment line
Basic structures:

polygonpoint set

CS 5633 Analysis of Algorithms 33/22/04

Computational geometry
Algorithms for solving “geometric problems”
in 2D and higher.
Fundamental objects:

point line segment line
Basic structures:

convex hulltriangulation

CS 5633 Analysis of Algorithms 43/22/04

Orthogonal range searching

Input: n points in d dimensions
• E.g., representing a database of n records

each with d numeric fields
Query: Axis-aligned box (in 2D, a rectangle)

• Report on the points inside the box:
• Are there any points?
• How many are there?
• List the points.

CS 5633 Analysis of Algorithms 53/22/04

Orthogonal range searching

Input: n points in d dimensions
Query: Axis-aligned box (in 2D, a rectangle)

• Report on the points inside the box
Goal: Preprocess points into a data structure

to support fast queries
• Primary goal: Static data structure
• In 1D, we will also obtain a
dynamic data structure
supporting insert and delete

CS 5633 Analysis of Algorithms 63/22/04

1D range searching
In 1D, the query is an interval:

First solution:
• Sort the points and store them in an array

• Solve query by binary search on endpoints.
• Obtain a static structure that can list
k answers in a query in O(k + log n) time.

Goal: Obtain a dynamic structure that can list
k answers in a query in O(k + log n) time.

CS 5633 Analysis of Algorithms 73/22/04

1D range searching
In 1D, the query is an interval:

New solution that extends to higher dimensions:
• Balanced binary search tree

• New organization principle:
Store points in the leaves of the tree.

• Internal nodes store copies of the leaves
to satisfy binary search property:

• Node x stores in key[x] the maximum
key of any leaf in the left subtree of x.

CS 5633 Analysis of Algorithms 83/22/04

Example of a 1D range tree

11

66 88 1212 1414

1717

2626 3535 4141 4242

4343

5959 6161

key[x] is the maximum key of any leaf in the left subtree of x.

CS 5633 Analysis of Algorithms 93/22/04

Example of a 1D range tree

121211

66 88 1212 1414

1717

2626 3535 4141 4242

4343

5959 6161

66 2626 4141 5959

11 1414 3535 4343

424288

1717
xx

≤ x > x

key[x] is the maximum key of any leaf in the left subtree of x.

CS 5633 Analysis of Algorithms 103/22/04

1212

88 1212 1414

1717

2626 3535 4141

2626

1414

Example of a 1D range query

11

66 4242

4343

5959 6161

66 4141 5959

11

1212

88 1212 1414

1717

2626 3535 4141

2626

1414 3535 4343

424288

1717

RANGE-QUERY([7, 41])

xx

≤ x > x

CS 5633 Analysis of Algorithms 113/22/04

General 1D range query
root

split node

CS 5633 Analysis of Algorithms 123/22/04

Pseudocode, part 1:
Find the split node

1D-RANGE-QUERY(T, [x1, x2])
w ← root[T]
while w is not a leaf and (x2 ≤ key[w] or key[w] < x1)

do if x2 ≤ key[w]
then w ← left[w]
else w ← right[w]

// w is now the split node
[traverse left and right from w and report relevant subtrees]

CS 5633 Analysis of Algorithms 133/22/04

Pseudocode, part 2: Traverse
left and right from split node

1D-RANGE-QUERY(T, [x1, x2])
[find the split node]
// w is now the split node
if w is a leaf
then output the leaf w if x1 ≤ key[w] ≤ x2
else v ← left[w] // Left traversal

while v is not a leaf
do if x1 ≤ key[v]

then output the subtree rooted at right[v]
v ← left[v]

else v ← right[v]
output the leaf v if x1 ≤ key[v] ≤ x2
[symmetrically for right traversal]

w

CS 5633 Analysis of Algorithms 143/22/04

Analysis of 1D-RANGE-QUERY

Query time: Answer to range query represented
by O(log n) subtrees found in O(log n) time.
Thus:

• Can test for points in interval in O(log n) time.
• Can report the first k points in interval in

O(k + log n) time.
• Can count points in interval in

O(log n) time (exercise)
Space: O(n)
Preprocessing time: O(n log n)

CS 5633 Analysis of Algorithms 153/22/04

2D range trees

CS 5633 Analysis of Algorithms 163/22/04

Store a primary 1D range tree for all the points
based on x-coordinate.

2D range trees

Thus in O(log n) time we can find O(log n) subtrees
representing the points with proper x-coordinate.
How to restrict to points with proper y-coordinate?

CS 5633 Analysis of Algorithms 173/22/04

2D range trees
Idea: In primary 1D range tree of x-coordinate,
every node stores a secondary 1D range tree
based on y-coordinate for all points in the subtree
of the node. Recursively search within each.

CS 5633 Analysis of Algorithms 183/22/04

Analysis of 2D range trees
Query time: In O(log2 n) = O((log n)2) time, we can
represent answer to range query by O(log2 n) subtrees.
Total cost for reporting k points: O(k + (log n)2).

Preprocessing time: O(n log n)

Space: The secondary trees at each level of the
primary tree together store a copy of the points.
Also, each point is present in each secondary
tree along the path from the leaf to the root.
Either way, we obtain that the space is O(n log n).

CS 5633 Analysis of Algorithms 193/22/04

d-dimensional range trees

Query time: O(k + logd n) to report k points.
Space: O(n logd – 1 n)
Preprocessing time: O(n logd – 1 n)

Each node of the secondary y-structure stores
a tertiary z-structure representing the points
in the subtree rooted at the node, etc.

Best data structure to date:
Query time: O(k + logd – 1 n) to report k points.
Space: O(n (log n / log log n)d – 1)
Preprocessing time: O(n logd – 1 n)

CS 5633 Analysis of Algorithms 203/22/04

Primitive operations:
Crossproduct

Given two vectors v1 = (x1, y1) and v2 = (x2, y2),
is their counterclockwise angle θ

• convex (< 180º),
• reflex (> 180º), or
• borderline (0 or 180º)?

v1

v2
θ v2

v1

θ
convex reflex

Crossproduct v1 × v2 = x1 y2 – y1 x2
= |v1| |v2| sin θ .

Thus, sign(v1 × v2) = sign(sin θ) > 0 if θ convex,
< 0 if θ reflex,
= 0 if θ borderline.

CS 5633 Analysis of Algorithms 213/22/04

Primitive operations:
Orientation test

Given three points p1, p2, p3 are they
• in clockwise (cw) order,
• in counterclockwise (ccw) order, or
• collinear?

(p2 – p1) × (p3 – p1)
> 0 if ccw
< 0 if cw
= 0 if collinear p1

p3

p2

cw p1

p2

p3

ccw

p1

p2

p3

collinear

CS 5633 Analysis of Algorithms 223/22/04

Primitive operations:
Sidedness test

Given three points p1, p2, p3 are they
• in clockwise (cw) order,
• in counterclockwise (ccw) order, or
• collinear?

Let L be the oriented line from p1 to p2.
Equivalently, is the point p3

• right of L,
• left of L, or
• on L?

p1

p2

p3

collinear

p1

p3

p2

cw p1

p2

p3

ccwL

L

CS 5633 Analysis of Algorithms 233/22/04

Line-segment intersection
Given n line segments, does any pair intersect?
Obvious algorithm: O(n2).

a

b

c

d
e

f

CS 5633 Analysis of Algorithms 243/22/04

Sweep-line algorithm
• Sweep a vertical line from left to right
(conceptually replacing x-coordinate with time).

• Maintain dynamic set S of segments
that intersect the sweep line, ordered
by y-coordinate of intersection.

• Order changes when
• new segment is encountered,
• existing segment finishes, or
• two segments cross

• Key event points are therefore segment endpoints.

segment
endpoints

sweep-line
status

CS 5633 Analysis of Algorithms 253/22/04

a

b

c

d
e

f

a
a
b b b b b b f f f f

c
a

c
a d d e d b e e
d

c c d b d d d
e e e b

CS 5633 Analysis of Algorithms 263/22/04

Sweep-line algorithm
Process event points in order by sorting segment
endpoints by x-coordinate and looping through:

• For a left endpoint of segment s:
• Add segment s to dynamic set S.
• Check for intersection between s
and its neighbors in S.

• For a right endpoint of segment s:
• Remove segment s from dynamic set S.
• Check for intersection between
the neighbors of s in S.

CS 5633 Analysis of Algorithms 273/22/04

b
e
d

b
d
c

b
d
c
e

b
c
a
d

a
a
b

c
a
b

a

b

c

d
e

f

intersection found

CS 5633 Analysis of Algorithms 283/22/04

Analysis

Use balanced search tree to store dynamic set S.

CS 5633 Analysis of Algorithms 293/22/04

Sweep-line algorithm
Process event points in order by sorting segment
endpoints by x-coordinate and looping through:

• For a left endpoint of segment s:
• Add segment s to dynamic set S.
• Check for intersection between s
and its neighbors in S.

• For a right endpoint of segment s:
• Remove segment s from dynamic set S.
• Check for intersection between
the neighbors of s in S.

O(n)

Ο(log n)

Ο(log n)

Ο(n log n)

CS 5633 Analysis of Algorithms 303/22/04

Analysis

Use balanced search tree to store dynamic set S.
Total running time: O(n log n).

Note that the algorithm stops after finding the
first intersection point. If we want to report all
intersection points, the algorithm can be extended
to run in O((n+k) log n) time, where k is the number
of intersections.

CS 5633 Analysis of Algorithms 313/22/04

Correctness
Theorem: If there is an intersection,
the algorithm finds it.
Proof: Let X be the leftmost intersection point.
Assume for simplicity that

• only two segments s1, s2 pass through X, and
• no two points have the same x-coordinate.

At some point before we reach X,
s1 and s2 become consecutive in the order of S.
Either initially consecutive when s1 or s2 inserted,

or became consecutive when another deleted.

