
CS 5633 Analysis of Algorithms 12/25/04

CS 5633 -- Spring 2004

Red-black trees
Carola Wenk

Slides courtesy of Charles Leiserson with small
changes by Carola Wenk

CS 5633 Analysis of Algorithms 22/25/04

Balanced search trees
Balanced search tree: A search-tree data
structure for which a height of O(log n) is
guaranteed when implementing a dynamic
set of n items.

Examples:

• AVL trees
• 2-3 trees
• 2-3-4 trees
• B-trees
• Red-black trees

CS 5633 Analysis of Algorithms 32/25/04

Red-black trees
This data structure requires an extra one-
bit color field in each node.
Red-black properties:
1. Every node is either red or black.
2. The root is black.
3. The leaves (NIL’s) are black.
4. If a node is red, then both its children are black.
5. All simple paths from any node x to a

descendant leaf have the same number of black
nodes = black-height(x).

CS 5633 Analysis of Algorithms 42/25/04

Example of a red-black tree

h = 4

88 1111

1010

1818

2626

2222

33

77

NIL NIL

NIL NIL NIL NIL

NIL

NIL NIL

CS 5633 Analysis of Algorithms 52/25/04

Example of a red-black tree

88 1111

1010

1818

2626

2222

33

77

NIL NIL

NIL NIL NIL NIL

NIL

NIL NIL

1. Every node is either red or black.

CS 5633 Analysis of Algorithms 62/25/04

Example of a red-black tree

88 1111

1010

1818

2626

2222

33

77

NIL NIL

NIL NIL NIL NIL

NIL

NIL NIL

2., 3. The root and leaves (NIL’s) are black.

CS 5633 Analysis of Algorithms 72/25/04

Example of a red-black tree

88 1111

1010

1818

2626

2222

33

77

NIL NIL

NIL NIL NIL NIL

NIL

NIL NIL

4. If a node is red, then both its children are
black.

CS 5633 Analysis of Algorithms 82/25/04

Example of a red-black tree

5. All simple paths from any node x to a
descendant leaf have the same number of
black nodes = black-height(x).

88 1111

1010

1818

2626

2222

33

77

NIL NIL

NIL NIL NIL NIL

NIL

NIL NIL

bh = 2

bh = 1

bh = 1

bh = 2

bh = 0

CS 5633 Analysis of Algorithms 92/25/04

Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 log(n + 1).

Proof. (The book uses induction. Read carefully.)
INTUITION:
• Merge red nodes

into their black
parents.

CS 5633 Analysis of Algorithms 102/25/04

Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 log(n + 1).

Proof. (The book uses induction. Read carefully.)
INTUITION:
• Merge red nodes

into their black
parents.

CS 5633 Analysis of Algorithms 112/25/04

Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 log(n + 1).

Proof. (The book uses induction. Read carefully.)
INTUITION:
• Merge red nodes

into their black
parents.

CS 5633 Analysis of Algorithms 122/25/04

Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 log(n + 1).

Proof. (The book uses induction. Read carefully.)
INTUITION:
• Merge red nodes

into their black
parents.

CS 5633 Analysis of Algorithms 132/25/04

Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 log(n + 1).

Proof. (The book uses induction. Read carefully.)
INTUITION:
• Merge red nodes

into their black
parents.

CS 5633 Analysis of Algorithms 142/25/04

Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 log(n + 1).

Proof. (The book uses induction. Read carefully.)

• This process produces a tree in which each node
has 2, 3, or 4 children.

• The 2-3-4 tree has uniform depth h′ of leaves.

INTUITION:
• Merge red nodes

into their black
parents.

h′

CS 5633 Analysis of Algorithms 152/25/04

Proof (continued)

h′

h

• We have
h′ ≥ h/2, since
at most half
the leaves on any path
are red.

• The number of leaves
in each tree is n + 1
⇒ n + 1 ≥ 2h'

⇒ log(n + 1) ≥ h' ≥ h/2
⇒ h ≤ 2 log(n + 1).

CS 5633 Analysis of Algorithms 162/25/04

Query operations

Corollary. The queries SEARCH, MIN,
MAX, SUCCESSOR, and PREDECESSOR
all run in O(log n) time on a red-black
tree with n nodes.

CS 5633 Analysis of Algorithms 172/25/04

Modifying operations

The operations INSERT and DELETE cause
modifications to the red-black tree:
• the operation itself,
• color changes,
• restructuring the links of the tree via

“rotations”.

CS 5633 Analysis of Algorithms 182/25/04

Rotations

AA
BB

αα ββ
γγ

RIGHT-ROTATE(B)

BB
AA

γγββ
αα

LEFT-ROTATE(A)

Rotations maintain the inorder ordering of keys:
• a ∈ α, b ∈ β, c ∈ γ ⇒ a ≤ A ≤ b ≤ B ≤ c.
A rotation can be performed in O(1) time.

CS 5633 Analysis of Algorithms 192/25/04

Insertion into a red-black tree

88

1010

1818

2626

2222

77
Example:

33

1111

IDEA: Insert x in tree. Color x red. Only red-
black property 4 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

CS 5633 Analysis of Algorithms 202/25/04

Insertion into a red-black tree

88 1111

1010

1818

2626

2222

77

1515

Example:
• Insert x =15.
• Recolor, moving the

violation up the tree.

33

IDEA: Insert x in tree. Color x red. Only red-
black property 4 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

CS 5633 Analysis of Algorithms 212/25/04

Insertion into a red-black tree

88 1111

1010

1818

2626

2222

77

1515

Example:
• Insert x =15.
• Recolor, moving the

violation up the tree.
• RIGHT-ROTATE(18).

33

IDEA: Insert x in tree. Color x red. Only red-
black property 4 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

CS 5633 Analysis of Algorithms 222/25/04

Insertion into a red-black tree

88

1111

1010

1818

2626

2222

77

1515

Example:
• Insert x =15.
• Recolor, moving the

violation up the tree.
• RIGHT-ROTATE(18).
• LEFT-ROTATE(7) and recolor.

33

IDEA: Insert x in tree. Color x red. Only red-
black property 4 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

CS 5633 Analysis of Algorithms 232/25/04

Insertion into a red-black tree
IDEA: Insert x in tree. Color x red. Only red-
black property 4 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

88 1111

1010

1818

2626

2222

77

1515

Example:
• Insert x =15.
• Recolor, moving the

violation up the tree.
• RIGHT-ROTATE(18).
• LEFT-ROTATE(7) and recolor.

33

CS 5633 Analysis of Algorithms 242/25/04

Pseudocode
RB-INSERT(T, x)

TREE-INSERT(T, x)
color[x] ← RED ⊳ only RB property 4 can be violated
while x ≠ root[T] and color[p[x]] = RED

do if p[x] = left[p[p[x]]
then y ← right[p[p[x]] ⊳ y = aunt/uncle of x

if color[y] = RED
then 〈Case 1〉
else if x = right[p[x]]

then 〈Case 2〉 ⊳ Case 2 falls into Case 3
〈Case 3〉

else 〈“then” clause with “left” and “right” swapped〉
color[root[T]] ← BLACK

CS 5633 Analysis of Algorithms 252/25/04

Graphical notation

Let denote a subtree with a black root.

All ’s have the same black-height.

CS 5633 Analysis of Algorithms 262/25/04

Case 1

BB

CC

DDAA

x
y

(Or, children of
A are swapped.)

BB

CC

DDAA

new x

Push C’s black onto
A and D, and recurse,
since C’s parent may
be red.

Recolor

CS 5633 Analysis of Algorithms 272/25/04

Case 2

BB

CC

AA

x

y
LEFT-ROTATE(A)

AA

CC

BB

x

y

Transform to Case 3.

CS 5633 Analysis of Algorithms 282/25/04

Case 3

AA

CC

BB

x

y
RIGHT-ROTATE(C)

AA

BB

CC

Done! No more
violations of RB
property 4 are
possible.

CS 5633 Analysis of Algorithms 292/25/04

Analysis

• Go up the tree performing Case 1, which only
recolors nodes.

• If Case 2 or Case 3 occurs, perform 1 or 2
rotations, and terminate.

Running time: O(log n) with O(1) rotations.
RB-DELETE — same asymptotic running time
and number of rotations as RB-INSERT (see
textbook).

