Bl CS 5633 - Spring 2004

[W :
“\‘ i

ALGORITHMS

1 il
|
\\"l —
1 ‘ l THOMAS H CORMEN
CHARLES E LEISERSON
RONALD L. RIVEST
CLIFFORD S TEIN

Order Statistics

Carola Wenk

Slides courtesy of Charles Leiserson with small
changes by Carola Wenk

2/11/04 CS 5633 Analysis of Algorithms

| ' ()rder statistics

NS \‘

Select the ith smallest of # elements (the
element with rank i).

e =1: minimum;,
* | =n: maximum,
¢ = L(n+1)/2J or r(n+1)/2_\: median.

Naive algorithm: Sort and index ith element.

Worst-case running time = O(n log n) + O(1)
= O(n log n),

using merge sort or heapsort (not quicksort).

2/11/04 CS 5633 Analysis of Algorithms

p!.‘ Randomized divide-and-
w3 conquer algorithm
RAND-SELECT(A, p,q,1) >ithsmallestofAlp..q]

if p =¢ then return 4| p]
7 <— RAND-PARTITION(4, p, q)

k<«—r—p+1 > k = rank(A[7])
if =/ then return A| r]
if 1<k

then return RAND-SELECT(A, p, r — 1, 1)
else return RAND-SELECT(A, r + 1, g, 1 — k)

k ,
< A[7] > A[r]
p r q

2/11/04 CS 5633 Analysis of Algorithms 3

=4+ Example

Select the 7 = 7th smallest:

6 10| 13| 5 |8 | 3 |2 |11} i=7
pivot

Partition:

2 15 36|38 |13|10|11) k=4

N\ _J
Y

Select the 7 — 4 = 3rd smallest recursively.

2/11/04 CS 5633 Analysis of Algorithms

St . . Intuition for analysis

'\\‘

(All our analyses today assume that all elements
are distinct.)

Lucky:
T(n) =T(9n/10) + O(n) ntogonl = 40 =1
= 0O(n) CASE 3
Unlucky:
I(n)y=1T(n—1)+ O(n) arithmetic series
= 0(n)

Worse than sorting!

2/11/04 CS 5633 Analysis of Algorithms

S Analysis of expected time

: \‘_.‘

The analysis follows that of randomized
quicksort, but 1t’s a little different.

Let 7(n) = the random variable for the running
time of RAND-SELECT on an 1nput of size 7,
assuming random numbers are independent.

For k=0, 1, ..., n—1, define the indicator
random variable

- { 1 1f PARTITION generates a & : n—k—1 split,
X, = .
0 otherwise.

2/11/04 CS 5633 Analysis of Algorithms

ALGORITH

w \‘\..‘

Analys1s (continued)

To obtaln an upper bound, assume that the ith
element always falls in the larger side of the

partition:
" T(max {0, n—1}) +O(n) if 0:n-1 split,

1(n) =<

T(max{l, n—2})+O(n) 1f 1 :n-2 split,

_I(max{n—1,0})+ O(n) 1t n-1:0 split,

— nZ_iXk(T(maX{k,n —k—-1})+0(n)).
k=0

2/11/04

CS 5633 Analysis of Algorithms

— ' Calculatmg expectation

nw \

E[T(n)]=E nf)(k (T(max{k,n—k—1})+O(n))
k=0

Take expectations of both sides.

2/11/04 CS 5633 Analysis of Algorithms

’\"\"" Calculating expectation

Y

E[T(n)]=E ank (T(max {k,n—k —1})+ O(n))
k=0

= nz_:lE[Xk(T(max{k,n —k=1})+0(n))]
k=0

Linearity of expectation.

2/11/04 CS 5633 Analysis of Algorithms

“.1 Calculating expectation

sz
AN \‘

E[T(n)]= Erzlxk (T(max{k,n—k—1})+ @(n))}
k=0

= nz_:lE[Xk(T(max{k,n —k=1})+0(n))]
k=0

= nz_:lE[Xk]-E[T(maX{k,n —k—1})+0(n)]
k=0

Independence of X, from other random
choices.

2/11/04 CS 5633 Analysis of Algorithms 10

= 4~ Calculating expectation

ey
Ve

n—1

E[T(n)]=E kzoXk (T(max {k,n—k —1}) + O(n))
- ;:Z(I)E[Xk (T(max {k,n —k —1})+O(n))]
- ;:Z‘;)E[Xk]- E[T (max {k,n—k —1}) + ©(n)]
- l_nz_l E[T(max {k,n—k - 1})]+ 1 nZ_lG)(n)
nizo 1o

Linearity of expectation; £[.X, | = 1/n.

2/11/04 CS 5633 Analysis of Algorithms

= 4~ Calculating expectation

ey
Ve

E[T(n)]=E nz_le (T(max {k,n—k —1})+ O(n))
k=0

- rfE[Xk(T(maX{k,n —k—1})+0O(n))]
k=0

— }fE[Xk]-E[T(maX{k,n —k—1})+0(n)]
k=0

1 nz:lE[T(maX{k,n —k — 1})]+ 1 nz_:l(“)(”l)
ni—o M j=0

n—1
< ik Z/E[T(k)] O Upper terms
=\ n/2 1
[n/2] appear twice.

2/11/04 CS 5633 Analysis of Algorithms 12

- \,' - Hairy recurrence

'\\‘

(But not quite as hairy as the quicksort one.)

E[T(n)]= ZE T(k)]+®(n)
k= (n/2 |
Prove: E[1(n)]| < cn for constant ¢ > 0.

* The constant ¢ can be chosen large enough
so that £[7(n)]| < cn for the base cases.

Use fact: Zk <3n? (exercise).
k=|n/ 2J

2/11/04 CS 5633 Analysis of Algorithms

13

ALGORITHMS
° * '_\‘
R

2/11/04

Substitution method

n—1
E[T(n)]< - ch +O(n)
Vk=|ni2

Substitute inductive hypothesis.

CS 5633 Analysis of Algorithms 14

2/11/04

= 5~ Substitution method

n—1
E[T(m)]<2 > ck+6(n)
& k=|n/2|

< 2;@112) +0O(n)

Use fact.

CS 5633 Analysis of Algorithms

15

2/11/04

= &~ Substitution method

n—|
E[T(m)]<? > ck+6(n)
Mk=|n/2]

< 2}@6‘@;@2) +O(n)

=Cn — (CZ — @(n)j

Express as desired — residual.

CS 5633 Analysis of Algorithms

16

""*\"'\',- Substitution method
-
E[T(n)]< : ch +0O(n)
& k=|n/2

< 2};(21/12) +0(n)

=cn— (T - @(n))

<cn,

if ¢ 1s chosen large enough so
that cn/4 dominates the ®(n).

2/11/04 CS 5633 Analysis of Algorithms

17

g Summary of randomized
~3" order-statistic selection
* Works fast: linear expected time.

* Excellent algorithm in practice.
* But, the worst case is very bad: O(»?).

0. Is there an algorithm that runs 1n linear
time 1n the worst case?

A. Yes, due to Blum, Floyd, Pratt, Rivest,
and Tarjan [1973].

IDEA: Generate a good p1vot recursively.

2/11/04 CS 5633 Analysis of Algorithms

18

m Worst-case linear-time order

w7 statistics

SELECT(Z, n)

1. D1ivide the » elements into groups of 5. Find
the median of each 5-element group by rote.

2. Recursively SELECT the median x of the | /5 |
group medians to be the pivot.

3. Partition around the pivot x. Let &k = rank(x).
4.1if 1=k then return x

elseif i <k Same as
then recursively SELECT the ith > RAND-
smallest element in the lower part SELECT

else recursively SELECT the (i—k)th
smallest element in the upper part

2/11/04 CS 5633 Analysis of Algorithms 19

ALGORITHMS

" Choosing the pivot

2/11/04 CS 5633 Analysis of Algorithms

20

ALG)I lTHMS

1.

2/11/04

U ® ®© 6 6 ©

ivide the » elements into groups of 5.

CS 5633 Analysis of Algorithms

Choosmg the pivot

21

=~ Choosing the pivot

1. Divide the » elements into groups of 5. Find ‘esser
the median of each 5-element group by rote. I

greater

2/11/04 CS 5633 Analysis of Algorithms 22

-*’w'“ ”f Choosing the pivot

A
Y

o
—COr®

§ ol
® © @ O

1. Divide the » elements into groups of 5. Find ‘esser
the median of each 5-element group by rote.

2. Recursively SELECT the median x of the | /5]
group medians to be the pivot. greater

2/11/04 CS 5633 Analysis of Algorithms 23

'“-*;\": Analysis

i

A
Y

o
.’v’.

§ ol
® © @ O

At least half the group medians are < x, which /esser
is at least | Ln/SJg/ﬂ = 1/10 group medians. I

greater

2/11/04 CS 5633 Analysis of Algorithms 24

e Analysis (Assume all elements are distinct.)

(o (s

At least half the group medians are < x, which /esser
is at least | Ln/SJg/ﬂ = 1/10 group medians. I

e Theretfore, at least 3 | n/10] elements are < x.

greater

2/11/04 CS 5633 Analysis of Algorithms 25

sy Analysis (Assume all elements are distinct.)

L

(o (s (9 (3 (s (s

X y
o ©

At least half the group medians are < x, which /esser
is at least | Ln/SJg/ﬂ = 1/10 group medians. I

e Theretfore, at least 3 | n/10] elements are < x.
e Similarly, at least 3 | 7/10] elements are > x. greater

2/11/04 CS 5633 Analysis of Algorithms 26

o ~ Minor simplification

|§
e

* For n > 50, we have 3| n/10] > n/4.

e Theretfore, for n > 50 the recursive call to
SELECT 1n Step 4 1s executed recursively
on < 3n/4 elements.

* Thus, the recurrence for running time
can assume that Step 4 takes time
1(3n/4) 1n the worst case.

* For n < 50, we know that the worst-case
time 1s 7(n) = O(1).

2/11/04 CS 5633 Analysis of Algorithms

27

ALGORITH

— Developlng the recurrence

| §
Y \‘

T (n)

On) 3

1(n/5)

SELECT(Z, 1)

O(n)

T(3n/4) <

2/11/04

1.

Divide the n elements into groups of 5. Find
the median of each 5-element group by rote.

. Recursively SELECT the median x of the | 7/5_

group medians to be the pivot.

. Partition around the pivot x. Let & = rank(x).
. if 7=k then return x

elseif i <k
then recursively SELECT the ith
smallest element in the lower part
else recursively SELECT the (i—k)th
smallest element 1n the upper part

CS 5633 Analysis of Algorithms 28

=7 Solving the recurrence
T'(n)= T(lnj + T(E’n) +Q(n)

5 4
Substitution: T'(n) < Lens3ent O(n)
1(n) < cn ?9 4
cn+0O(n)
20
1
=cn—| —cn—0(n
(2572
<cn

5

if ¢ 1s chosen large enough to handle both the
®(n) and the 1mitial conditions.

2/11/04 CS 5633 Analysis of Algorithms 29

IF"‘HF"III

. Conclusmns

N |
Y -

. Slnce the work at each level of recursion
1s a constant fraction (19/20) smaller, the
work per level 1s a geometric series
dominated by the linear work at the root.

* In practice, this algorithm runs slowly,
because the constant in front of 7 1s large.

* The randomized algorithm is far more
practical.

Exercise: Try to divide into groups of 3 or 7.

2/11/04 CS 5633 Analysis of Algorithms 30

