
1/26/04 CS 5633 Analysis of Algorithms 1

CS 5633 -- Spring 2004

More Divide & Conquer
Carola Wenk

Slides courtesy of Charles Leiserson with small
changes by Carola Wenk

1/26/04 CS 5633 Analysis of Algorithms 2

The divide-and-conquer
design paradigm

1. Divide the problem (instance)
into subproblems.

2. Conquer the subproblems by
solving them recursively.

3. Combine subproblem solutions.

1/26/04 CS 5633 Analysis of Algorithms 3

Example: merge sort

1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays.
3. Combine: Linear-time merge.

T(n) = 2 T(n/2) + O(n)
subproblems subproblem size work dividing

and combining
nlogba = nlog22 = n1 = n ⇒ CASE 2 (k = 0)

⇒ T(n) = Θ(n log n) .

1/26/04 CS 5633 Analysis of Algorithms 4

Recurrence for binary search

T(n) = 1 T(n/2) + Θ(1)

subproblems
subproblem size

work dividing
and combining

nlogba = nlog21 = n0 = 1 ⇒ CASE 2 (k = 0)
⇒ T(n) = Θ(log n) .

1/26/04 CS 5633 Analysis of Algorithms 5

Powering a number

Problem: Compute a n, where n ∈ N.

a n =
a n/2 ⋅ a n/2 if n is even;
a (n–1)/2 ⋅ a (n–1)/2 ⋅ a if n is odd.

Divide-and-conquer algorithm:

T(n) = T(n/2) + Θ(1) ⇒ T(n) = Θ(log n) .

Naive algorithm: Θ(n).

1/26/04 CS 5633 Analysis of Algorithms 6

Fibonacci numbers
Recursive definition:

Fn =
0 if n = 0;

Fn–1 + Fn–2 if n ≥ 2.
1 if n = 1;

0 1 1 2 3 5 8 13 21 34 L

Naive recursive algorithm: Ω(φ n)
(exponential time), where φ =
is the golden ratio.

2/)51(+

1/26/04 CS 5633 Analysis of Algorithms 7

Computing Fibonacci
numbers

Naive recursive squaring:
Fn = φ n/ rounded to the nearest integer.5

• Recursive squaring: Θ(log n) time.
• This method is unreliable, since floating-point

arithmetic is prone to round-off errors.
Bottom-up:
• Compute F0, F1, F2, …, Fn in order, forming

each number by summing the two previous.
• Running time: Θ(n).

1/26/04 CS 5633 Analysis of Algorithms 8

Recursive squaring
n

FF
FF

nn

nn





=






−

+

01
11

1

1Theorem: .

Proof of theorem. (Induction on n.)

Base (n = 1): .
1

01
11

01

12





=





FF
FF

Algorithm: Recursive squaring.
Time = Θ(log n) .

1/26/04 CS 5633 Analysis of Algorithms 9

Recursive squaring

.

.

Inductive step (n ≥ 2):

n

n
FF
FF

FF
FF

nn

nn

nn

nn






=






⋅
−






=






⋅





=






−−

−

−

+

01
11

01
111

01
11

01
11

21

1

1

1

1/26/04 CS 5633 Analysis of Algorithms 10

Matrix multiplication



















⋅



















=



















nnnn

n

n

nnnn

n

n

nnnn

n

n

bbb

bbb
bbb

aaa

aaa
aaa

ccc

ccc
ccc

L

MOMM

L

L

L

MOMM

L

L

L

MOMM

L

L

21

22221

11211

21

22221

11211

21

22221

11211

∑
=

⋅=
n

k
kjikij bac

1

Input: A = [aij], B = [bij].
Output: C = [cij] = A⋅B. i, j = 1, 2,… , n.

1/26/04 CS 5633 Analysis of Algorithms 11

Standard algorithm

for i ← 1 to n
do for j ← 1 to n

do cij ← 0
for k ← 1 to n

do cij ← cij + aik⋅ bkj

Running time = Θ(n3)

1/26/04 CS 5633 Analysis of Algorithms 12

Divide-and-conquer algorithm

n×n matrix = 2×2 matrix of (n/2)×(n/2) submatrices:
IDEA:






⋅




=





hg
fe

dc
ba

ut
sr

C = A ⋅ B
r = ae + bg
s = af + bh
t = ce + dh
u = cf + dg

8 mults of (n/2)×(n/2) submatrices
4 adds of (n/2)×(n/2) submatrices

1/26/04 CS 5633 Analysis of Algorithms 13

Analysis of D&C algorithm

nlogba = nlog28 = n3 ⇒ CASE 1 ⇒ T(n) = Θ(n3).

No better than the ordinary algorithm.

submatrices
submatrix size

work adding
submatrices

T(n) = 8 T(n/2) + Θ(n2)

1/26/04 CS 5633 Analysis of Algorithms 14

7 mults, 18 adds/subs.
Note: No reliance on
commutativity of mult!

7 mults, 18 adds/subs.
Note: No reliance on
commutativity of mult!

Strassen’s idea
• Multiply 2×2 matrices with only 7 recursive mults.

P1 = a ⋅ (f – h)
P2 = (a + b) ⋅ h
P3 = (c + d) ⋅ e
P4 = d ⋅ (g – e)
P5 = (a + d) ⋅ (e + h)
P6 = (b – d) ⋅ (g + h)
P7 = (a – c) ⋅ (e + f)

r = P5 + P4 – P2 + P6
s = P1 + P2
t = P3 + P4
u = P5 + P1 – P3 – P7

1/26/04 CS 5633 Analysis of Algorithms 15

Strassen’s idea
• Multiply 2×2 matrices with only 7 recursive mults.

P1 = a ⋅ (f – h)
P2 = (a + b) ⋅ h
P3 = (c + d) ⋅ e
P4 = d ⋅ (g – e)
P5 = (a + d) ⋅ (e + h)
P6 = (b – d) ⋅ (g + h)
P7 = (a – c) ⋅ (e + f)

r = P5 + P4 – P2 + P6
= (a + d) (e + h)

+ d (g – e) – (a + b) h
+ (b – d) (g + h)

= ae + ah + de + dh
+ dg –de – ah – bh
+ bg + bh – dg – dh

= ae + bg

1/26/04 CS 5633 Analysis of Algorithms 16

Strassen’s algorithm
1. Divide: Partition A and B into

(n/2)×(n/2) submatrices. Form terms
to be multiplied using + and – .

2. Conquer: Perform 7 multiplications of
(n/2)×(n/2) submatrices recursively.

3. Combine: Form C using + and – on
(n/2)×(n/2) submatrices.

T(n) = 7 T(n/2) + Θ(n2)

1/26/04 CS 5633 Analysis of Algorithms 17

Analysis of Strassen
T(n) = 7 T(n/2) + Θ(n2)

nlogba = nlog27 ≈ n2.81 ⇒ CASE 1 ⇒ T(n) = Θ(nlog 7).

Best to date (of theoretical interest only): Θ(n2.376L).

The number 2.81 may not seem much smaller than
3, but because the difference is in the exponent, the
impact on running time is significant. In fact,
Strassen’s algorithm beats the ordinary algorithm
on today’s machines for n ≥ 30 or so.

1/26/04 CS 5633 Analysis of Algorithms 18

VLSI layout
Problem: Embed a complete binary tree
with n leaves in a grid using minimal area.

H(n)

W(n)

H(n) = H(n/2) + Θ(1)
= Θ(log n)

W(n) = 2W(n/2) + Θ(1)
= Θ(n)

Area = Θ(n log n)

1/26/04 CS 5633 Analysis of Algorithms 19

Conclusion

• Divide and conquer is just one of several
powerful techniques for algorithm design.

• Divide-and-conquer algorithms can be
analyzed using recurrences and the master
method (so practice this math).

• Can lead to more efficient algorithms

