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The divide-and-conquer 
design paradigm

1. Divide the problem (instance) 
into subproblems.

2. Conquer the subproblems by 
solving them recursively.

3. Combine subproblem solutions.
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Example: merge sort

1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays.
3. Combine: Linear-time merge.

T(n) = 2 T(n/2) + O(n)
# subproblems subproblem size work dividing 

and combining
nlogba = nlog22 = n1 = n ⇒ CASE 2 (k = 0)

⇒ T(n) = Θ(n log n) . 
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Recurrence for binary search

T(n) = 1 T(n/2) + Θ(1)

# subproblems
subproblem size

work dividing 
and combining

nlogba = nlog21 = n0 = 1 ⇒ CASE 2 (k = 0)
⇒ T(n) = Θ(log n) . 
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Powering a number

Problem: Compute a n, where n ∈ N.

a n =
a n/2 ⋅ a n/2 if n is even;
a (n–1)/2 ⋅ a (n–1)/2 ⋅ a if n is odd.

Divide-and-conquer algorithm:

T(n) = T(n/2) + Θ(1)  ⇒ T(n) = Θ(log n) . 

Naive algorithm: Θ(n).



1/26/04 CS 5633 Analysis of Algorithms 6

Fibonacci numbers
Recursive definition:

Fn =
0 if n = 0;

Fn–1 + Fn–2 if n ≥ 2.
1 if n = 1;

0 1 1 2 3 5 8 13 21 34 L

Naive recursive algorithm: Ω(φ n)
(exponential time), where φ =
is the golden ratio.

2/)51( +
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Computing Fibonacci 
numbers

Naive recursive squaring:
Fn = φ n/ rounded to the nearest integer.5

• Recursive squaring: Θ(log n) time. 
• This method is unreliable, since floating-point 

arithmetic is prone to round-off errors.
Bottom-up: 
• Compute F0, F1, F2, …, Fn in order, forming 

each number by summing the two previous.
• Running time: Θ(n). 
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Recursive squaring
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Proof of theorem.  (Induction on n.)
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Algorithm: Recursive squaring.
Time = Θ(log n) .
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Recursive squaring

.
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Inductive step (n ≥ 2):
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Matrix multiplication
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Input: A = [aij], B = [bij].
Output: C = [cij] = A⋅B. i, j = 1, 2,… , n.
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Standard algorithm

for i ← 1 to n
do for j ← 1 to n

do cij ← 0
for k ← 1 to n

do cij ← cij + aik⋅ bkj

Running time = Θ(n3)
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Divide-and-conquer algorithm

n×n matrix = 2×2 matrix of (n/2)×(n/2) submatrices:
IDEA:
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C = A ⋅ B
r = ae + bg
s = af + bh
t = ce + dh
u = cf + dg

8 mults of (n/2)×(n/2) submatrices
4 adds of (n/2)×(n/2) submatrices
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Analysis of D&C algorithm

nlogba = nlog28 = n3 ⇒ CASE 1 ⇒ T(n) = Θ(n3). 

No better than the ordinary algorithm.

# submatrices
submatrix size

work adding 
submatrices

T(n) = 8 T(n/2) + Θ(n2)
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7 mults, 18 adds/subs.
Note: No reliance on 
commutativity of mult!

7 mults, 18 adds/subs.
Note: No reliance on 
commutativity of mult!

Strassen’s idea
• Multiply 2×2 matrices with only 7 recursive mults. 

P1 = a ⋅ ( f – h)
P2 = (a + b) ⋅ h
P3 = (c + d) ⋅ e
P4 = d ⋅ (g – e)
P5 = (a + d) ⋅ (e + h)
P6 = (b – d) ⋅ (g + h)
P7 = (a – c) ⋅ (e + f )

r = P5 + P4 – P2 + P6
s = P1 + P2
t = P3 + P4
u = P5 + P1 – P3 – P7
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Strassen’s idea
• Multiply 2×2 matrices with only 7 recursive mults. 

P1 = a ⋅ ( f – h)
P2 = (a + b) ⋅ h
P3 = (c + d) ⋅ e
P4 = d ⋅ (g – e)
P5 = (a + d) ⋅ (e + h)
P6 = (b – d) ⋅ (g + h)
P7 = (a – c) ⋅ (e + f )

r = P5 + P4 – P2 + P6
= (a + d) (e + h) 

+ d (g – e) – (a + b) h
+ (b – d) (g + h)

= ae + ah + de + dh 
+ dg –de – ah – bh
+ bg + bh – dg – dh

= ae + bg
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Strassen’s algorithm
1. Divide: Partition A and B into 

(n/2)×(n/2) submatrices.  Form terms 
to be multiplied using + and – .

2. Conquer: Perform 7 multiplications of 
(n/2)×(n/2) submatrices recursively.

3. Combine: Form C using + and – on 
(n/2)×(n/2) submatrices.

T(n) = 7 T(n/2) + Θ(n2)
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Analysis of Strassen
T(n) = 7 T(n/2) + Θ(n2)

nlogba = nlog27 ≈ n2.81 ⇒ CASE 1 ⇒ T(n) = Θ(nlog 7).

Best to date (of theoretical interest only): Θ(n2.376L).

The number 2.81 may not seem much smaller than 
3, but because the difference is in the exponent, the 
impact on running time is significant.  In fact, 
Strassen’s algorithm beats the ordinary algorithm 
on today’s machines for n ≥ 30 or so.
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VLSI layout
Problem: Embed a complete binary tree 
with n leaves in a grid using minimal area.

H(n)

W(n)

H(n) = H(n/2) + Θ(1)
= Θ(log n)

W(n) = 2W(n/2) + Θ(1)
= Θ(n)

Area = Θ(n log n)
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Conclusion

• Divide and conquer is just one of several 
powerful techniques for algorithm design. 

• Divide-and-conquer algorithms can be 
analyzed using recurrences and the master 
method (so practice this math).

• Can lead to more efficient algorithms


