
1/21/04 CS 5633 Analysis of Algorithms 1

CS 5633 -- Spring 2004

Recurrences and Divide & Conquer
Carola Wenk

Slides courtesy of Charles Leiserson with small 
changes by Carola Wenk



1/21/04 CS 5633 Analysis of Algorithms 2

Merge sort

MERGE-SORT A[1 . . n]
1. If n = 1, done.
2. Recursively sort A[ 1 . . n/2 ]

and A[ n/2+1 . . n ] .
3. “Merge” the 2 sorted lists.

Key subroutine: MERGE



1/21/04 CS 5633 Analysis of Algorithms 3

Merging two sorted arrays

20

13

7

2

12

11

9

1



1/21/04 CS 5633 Analysis of Algorithms 4

Merging two sorted arrays

20

13

7

2

12

11

9

1

1



1/21/04 CS 5633 Analysis of Algorithms 5

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9



1/21/04 CS 5633 Analysis of Algorithms 6

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2



1/21/04 CS 5633 Analysis of Algorithms 7

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9



1/21/04 CS 5633 Analysis of Algorithms 8

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7



1/21/04 CS 5633 Analysis of Algorithms 9

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9



1/21/04 CS 5633 Analysis of Algorithms 10

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9



1/21/04 CS 5633 Analysis of Algorithms 11

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11



1/21/04 CS 5633 Analysis of Algorithms 12

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11



1/21/04 CS 5633 Analysis of Algorithms 13

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

20

13

12



1/21/04 CS 5633 Analysis of Algorithms 14

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

20

13

12

12



1/21/04 CS 5633 Analysis of Algorithms 15

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

20

13

12

12

Time dn = Θ(n) to merge a 
total of n elements (linear 

time).



1/21/04 CS 5633 Analysis of Algorithms 16

Analyzing merge sort

MERGE-SORT A[1 . . n]
1. If n = 1, done.
2. Recursively sort A[ 1 . . n/2 ]

and A[ n/2+1 . . n ] .
3. “Merge” the 2 sorted lists

T(n)
d0
2T(n/2)

dn

Sloppiness: Should be T( n/2 ) + T( n/2 ) , 
but it turns out not to matter asymptotically.



1/21/04 CS 5633 Analysis of Algorithms 17

Recurrence for merge sort

T(n) =
d0 if n = 1;
2T(n/2) + dn if n > 1.

• We shall often omit stating the base case 
when T(n) = Θ(1) for sufficiently small n, 
but only when it has no effect on the 
asymptotic solution to the recurrence.

• But what does T(n) solve to? I.e., is it 
O(n) or O(n2) or O(n3) or …?



1/21/04 CS 5633 Analysis of Algorithms 18

The divide-and-conquer 
design paradigm

1. Divide the problem (instance) 
into subproblems.

2. Conquer the subproblems by 
solving them recursively.

3. Combine subproblem solutions.



1/21/04 CS 5633 Analysis of Algorithms 19

Example: merge sort

1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays.
3. Combine: Linear-time merge.

T(n) = 2 T(n/2) + Θ(n)

# subproblems
subproblem size

work dividing 
and combining



1/21/04 CS 5633 Analysis of Algorithms 20

Binary search

Example: Find 9

3 5 7 8 9 12 15

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.



1/21/04 CS 5633 Analysis of Algorithms 21

Binary search

Example: Find 9

3 5 7 8 9 12 15

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.



1/21/04 CS 5633 Analysis of Algorithms 22

Binary search

Example: Find 9

3 5 7 8 9 12 15

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.



1/21/04 CS 5633 Analysis of Algorithms 23

Binary search

Example: Find 9

3 5 7 8 9 12 15

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.



1/21/04 CS 5633 Analysis of Algorithms 24

Binary search

Example: Find 9

3 5 7 8 9 12 15

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.



1/21/04 CS 5633 Analysis of Algorithms 25

Binary search

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9

3 5 7 8 9 12 15



1/21/04 CS 5633 Analysis of Algorithms 26

Recurrence for binary search

T(n) = 1 T(n/2) + Θ(1)

# subproblems
subproblem size

work dividing 
and combining



1/21/04 CS 5633 Analysis of Algorithms 27

Recurrence for merge sort

T(n) =
Θ(1) if n = 1;
2T(n/2) + Θ(n) if n > 1.

• How do we solve T(n)? I.e., how do we 
found out if it is O(n) or O(n2) or …?



1/21/04 CS 5633 Analysis of Algorithms 28

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.



1/21/04 CS 5633 Analysis of Algorithms 29

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

T(n)



1/21/04 CS 5633 Analysis of Algorithms 30

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

T(n/2) T(n/2)

dn



1/21/04 CS 5633 Analysis of Algorithms 31

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

T(n/4) T(n/4) T(n/4) T(n/4)

dn/2 dn/2



1/21/04 CS 5633 Analysis of Algorithms 32

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

Θ(1)

…



1/21/04 CS 5633 Analysis of Algorithms 33

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

Θ(1)

…

h = log n



1/21/04 CS 5633 Analysis of Algorithms 34

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

Θ(1)

…

h = log n

dn



1/21/04 CS 5633 Analysis of Algorithms 35

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

Θ(1)

…

h = log n

dn

dn



1/21/04 CS 5633 Analysis of Algorithms 36

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

Θ(1)

…

h = log n

dn

dn

dn

…



1/21/04 CS 5633 Analysis of Algorithms 37

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

Θ(1)

…

h = log n

dn

dn

dn

#leaves = n Θ(n)

…



1/21/04 CS 5633 Analysis of Algorithms 38

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

Θ(1)

…

h = log n

dn

dn

dn

#leaves = n Θ(n)
Total Θ(n log n)

…



1/21/04 CS 5633 Analysis of Algorithms 39

Conclusions

• Merge sort runs in Θ(n lg n) time.
• Θ(n lg n) grows more slowly than Θ(n2).
• Therefore, merge sort asymptotically 

beats insertion sort in the worst case.
• In practice, merge sort beats insertion 

sort for n > 30 or so. (Why not earlier?)



1/21/04 CS 5633 Analysis of Algorithms 40

Recursion-tree method

• A recursion tree models the costs (time) of a 
recursive execution of an algorithm.

• The recursion-tree method can be unreliable, 
just like any method that uses ellipses (…).

• It is good for generating guesses of what the 
runtime could be. 

But: Need to verify that the guess is right.
→ Induction (substitution method)



1/21/04 CS 5633 Analysis of Algorithms 41

Substitution method

1. Guess the form of the solution:
(e.g. using recursion trees, or 

expansion)
2. Verify by induction (inductive step).
3. Solve for constants n0 and c (base case of 

induction)

The most general method to solve a recurrence 
(prove O and Θ separately):



1/21/04 CS 5633 Analysis of Algorithms 42

The divide-and-conquer 
design paradigm

1. Divide the problem (instance) into 
subproblems.

a subproblems, each of size n/b
2. Conquer the subproblems by 

solving them recursively.
3. Combine subproblem solutions.

Runtime is f(n)



1/21/04 CS 5633 Analysis of Algorithms 43

The master method

The master method applies to recurrences of 
the form

T(n) = a T(n/b) + f (n) , 
where a ≥ 1, b > 1, and f is asymptotically 
positive.



1/21/04 CS 5633 Analysis of Algorithms 44

Three common cases
Compare f (n) with nlogba:
1. f (n) = O(nlogba – ε) for some constant ε > 0.

• f (n) grows polynomially slower than nlogba

(by an nε factor).
Solution: T(n) = Θ(nlogba) .

2. f (n) = Θ(nlogba lgkn) for some constant k ≥ 0.
• f (n) and nlogba grow at similar rates.
Solution: T(n) = Θ(nlogba lgk+1n) .



1/21/04 CS 5633 Analysis of Algorithms 45

Three common cases (cont.)
Compare f (n) with nlogba:

3. f (n) = Ω(nlogba + ε) for some constant ε > 0.
• f (n) grows polynomially faster than nlogba (by 

an nε factor),
and f (n) satisfies the regularity condition that 
a f (n/b) ≤ c f (n) for some constant c < 1.
Solution: T(n) = Θ( f (n)) .



1/21/04 CS 5633 Analysis of Algorithms 46

Examples

Ex. T(n) = 4T(n/2) + n
a = 4, b = 2 ⇒ nlogba = n2; f (n) = n.
CASE 1: f (n) = O(n2 – ε) for ε = 1.
∴ T(n) = Θ(n2).

Ex. T(n) = 4T(n/2) + n2

a = 4, b = 2 ⇒ nlogba = n2; f (n) = n2.
CASE 2: f (n) = Θ(n2lg0n), that is, k = 0.
∴ T(n) = Θ(n2lg n).



1/21/04 CS 5633 Analysis of Algorithms 47

Examples

Ex. T(n) = 4T(n/2) + n3

a = 4, b = 2 ⇒ nlogba = n2; f (n) = n3.
CASE 3: f (n) = Ω(n2 + ε) for ε = 1
and 4(cn/2)3 ≤ cn3 (reg. cond.) for c = 1/2.
∴ T(n) = Θ(n3).

Ex. T(n) = 4T(n/2) + n2/lgn
a = 4, b = 2 ⇒ nlogba = n2; f (n) = n2/lgn.
Master method does not apply.  In particular, 
for every constant ε > 0, we have nε = ω(lgn).



1/21/04 CS 5633 Analysis of Algorithms 48

Master theorem (summary)
T(n) = a T(n/b) + f (n)

CASE 1: f (n) = O(nlogba – ε)
⇒ T(n) = Θ(nlogba) .

CASE 2: f (n) = Θ(nlogba lgkn)
⇒ T(n) = Θ(nlogba lgk+1n) .

CASE 3: f (n) = Ω(nlogba + ε) and a f (n/b) ≤ c f (n) 
⇒ T(n) = Θ( f (n)) .

Merge sort: a = 2, b = 2 ⇒ nlogba = n
⇒ CASE 2 (k = 0)  ⇒ T(n) = Θ(n lg n) . 


