CS 5633 Analysis of Algorithms — Spring 04
3/31/04

9. Homework
Due 4/7/04 before class

1. Bottom-up BST construction (4 points)
Let a sorted set of n integers be given. You may assume that n is a power of 2.
The task is to compute a balanced binary search tree of those integers, where the
integers are stored only in the leqves, and the inner nodes contain copies of the
integers, as discussed in class.

Give an O(n) algorithm which constructs this balanced binary search tree bottom-
up (i.e., starting with the leaves first). You may assume that the input is given in
your favorite way (array, linked list, ...).

Show why the runtime of your algorithm is O(n), and argue what the height of
the tree is.

2. Red-black trees with keys in the leaves (5 points)
Given a list of n unsorted integers, we want to construct a red-black tree that
stores all those integers only in the leqves, and the inner nodes contain copies of
the integers, as discussed in class.

a) (3 points) Assume you construct this tree by incrementally inserting the
numbers, using the RB-INSERT routine (see page 280). Which changes do
you have to make to this routine such that it stores the integers in the leaves?

b) (2 points) Assume now you construct the tree using problem 1.: First
sort the numbers (using some O(n logn)-time algorithm), and then construct
a balanced binary search tree bottom-up. How can you make red-black color-
assignments to the nodes, such that the tree becomes a red-black tree?

3. Sweep-line status (4 points)
Consider the sweep-line algorithm we had in class for computing if n given line
segments intersect or not. We said that the sweep-line status is a “dynamic set”
which is implemented using red-black trees. But how exactly is this done?

Notice that between two consecutive events, the sweep-line status stays the same
(because the ordering of the segments stays the same). But if you look at the in-
tersection points of the segments with the sweep line, then the coordinates of those
intersection points vary when the sweep-line moves; even if the sweep-line moves
just between two consecutive event points. However, the order of the segments
stays the same.

How can this functionality be implemented using a balanced binary search tree?
You do not have to go into details of the implementation; just state what is stored
in the nodes, and which values are used to determine how to insert a new node.

FLIP OVER TO BACK PAGE —>

4. Triangles (5 EXTRA-CREDIT points)
Let S be a set of n triangles in the plane (each given by its three endpoints). The
boundaries of the triangles are disjoint, and no triangle lies completely inside
another triangle. Let P be a set of n points in the plane.

Give a sweep-line algorithm which reports all points of P that are not contained
in any of the triangles. Your algorithm should run in O(nlogn) time.

e What are the events?

e Let your sweep-line status be an ordered set of intervals (i.e., the “scene”
intersected at the sweep-line)

e At any moment in “time” you should have reported all the points left of the
sweep-line (if they lie outside the triangles).

5. Range trees (12 points)
Let P = {(0.5,1.5), (1,4), (2,1), (3,2.5), (4,0.5), (4.5,2), (5,3.5), (6,3), (6.5, 2),
(7,4.5), (8, 1.5), (9,3), (10, 1), (10.5,2.5), (11, 4), (12,3.5)} be a set of

two-dimensional points.

[}
4 —+ ° °
[] [}
3 1 ° °
[] [}
2 —— ° °
[] []
1 —+ ° °
[}
—t = x
1 2 3 4 5 6 7 8 9 10 11 12

FLIP OVER TO BACK PAGE —

a) (4 points) Construct their primary range tree (with the keys being the
z-coordinates). Make sure to store the two-dimensional points in the leaves, or
pointers to them (and not just their z-coordinates).

You do not have to show how the tree is constructed; just show the tree. (You

may use the algorithm from problem 1. to construct it).

b) (4 points) Now construct all the secondary range trees (with the keys being
the y-coordinates). Make sure to store the two-dimensional points in the leaves,
or pointers to them (and not just their y-coordinates).

c) (4 points) Consider the query rectangle [z; = 1,22 = 6] X [y1 = 1.5,y2 = 4].
Show how the range reporting query (i.e., “print out all points in the query
rectangle”) proceeds in the range tree:

— Show the split nodes (in the primary tree, and in the secondary trees).

— Show the search paths (in the primary tree, and in the secondary trees).

Show which secondary trees are queried.

Show which points are output (mark the corresponding leaves in the
secondary trees).

The back of the homework contains a few copies of the point set, in case you need
them.

12

11

10

12

11

10

12

11

10

